Verticillium dahliae; gene knockout frequency; homologous recombination; nonhomologous end-joining[1]Klosterman S J, Subbarao K V, Kang S, Veronese P, Gold S E, Thomma B P, Chen Z, Henrissat B, Lee Y H, Park J, Garcia-Pedrajas M D, Barbara D J, Anchieta A, de Jonge R, Santhanam P, Maruthachalam K, Atallah Z, Amyotte S G, Paz Z, Inderbitzin P, Hayes R J, Heiman D I, Young S, Zeng Q, Engels R, Galagan J, Cuomo C A, Dobinson K F, Ma L J. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLOS Pathogens, 2011, 7(7): e1002137.[2]田李, 陈捷胤, 陈相永, 汪佳妮, 戴小枫. 大丽轮枝菌 (Verticillium dahliae VdLs.17) 分泌组预测及分析. 中国农业科学, 2011, 44(15): 3142-3153.Tian L, Chen J Y, Chen X Y, Wang J N, Dai X F. Prediction and analysis of Verticillium dahliae VdLs.17 secretome. Scientia Agricultura Sinica, 2011, 44(15): 3142-3153. (in Chinese)[3]徐荣旗, 汪佳妮, 陈捷胤, 戴小枫. 棉花黄萎病菌T-DNA插入突变体表型特征和侧翼序列分析. 中国农业科学, 2010, 43(3): 489-496.Xu R Q, Wang J N, Chen J Y, Dai X F. Analysis of T-DNA insertional flanking sequence and mutant phenotypic characteristics in Verticillium dahliae. Scientia Agricultura Sinica, 2010, 43(3): 489-496. (in Chinese)[4]Meyer V. Genetic engineering of filamentous fungi-progress, obstacles and future trends. Biotechnology Advances, 2008, 26(2): 177-185.[5]田李, 陈捷胤, 汪佳妮, 王金龙, 戴小枫. 高效大丽轮枝菌 (Verticillium dahliae)基因敲除体系的构建. 微生物学报, 2011, 51(7): 906-913.Tian L, Chen J Y, Wang J N, Wang J L, Dai X F. High efficient gene knockout in Verticillium dahliae. Acta Microbiologica Sinica, 2011, 51(7): 906-913. (in Chinese)[6]Li T, Huang S, Zhao X F, Wright D A, Carpenter S C, Spalding M H, Weeks D P, Yang B. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Research, 2011, 39(14): 6315-6325.[7]Kim S B, Timmusk S. A simplified method for gene knockout and direct screening of recombinant clones for application in Paenibacillus polymyxa. PLoS One, 2013, 8(6): e68092.[8]Moore R E, Haber J E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Molecular and Cellular Biology, 1996, 16(5): 2164-2173.[9]Krappmann S. Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biology Reviews, 2007, 21(1): 25-29.[10]Ninomiya Y, Suzuki K, Ishii C, Inoue H. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(33): 12248-12253.[11]Nayak T, Szewczyk E, Oakley C E, Osmani A, Ukil L, Murray S L, Hynes M J, Osmani S A, Oakley B R. A versatile and efficient gene- targeting system for Aspergillus nidulans. Genetics, 2006, 172(3): 1557-1566.[12]Choquer M, Robin G, Le Pecheur P, Giraud C, Levis C, Viaud M. Ku70 or Ku80 deficiencies in the fungus Botrytis cinerea facilitate targeting of genes that are hard to knock out in a wild-type context. FEMS Microbiology Letters, 2008, 289(2): 225-232.[13]He Y, Liu Q, Shao Y, Chen F. ku70 and ku80 null mutants improve the gene targeting frequency in Monascus ruber M7. Applied Microbiology and Biotechnology, 2013, 97(11): 4965-4976.[14]Villalba F, Collemare J, Landraud P, Lambou K, Brozek V, Cirer B, Morin D, Bruel C, Beffa R, Lebrun M H. Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genetics and Biology, 2008, 45(1): 68-75.[15]Meyer V, Arentshorst M, El-Ghezal A, Drews A C, Kooistra R, van den Hondel C A, Ram A F. Highly efficient gene targeting in the Aspergillus niger kusA mutant. Journal of Biotechnology, 2007, 128(4): 770-775.[16]Krappmann S, Sasse C, Braus G H. Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background. Eukaryotic Cell, 2006, 5(1): 212-215.[17]Li Z H, Du C M, Zhong Y H, Wang T H. Development of a highly efficient gene targeting system allowing rapid genetic manipulations in Penicillium decumbens. Applied Microbiology and Biotechnology, 2010, 87(3): 1065-1076.[18]Chang P K, Scharfenstein L L, Wei Q, Bhatnagar D. Development and refinement of a high-efficiency gene-targeting system for Aspergillus flavus. Journal of Microbiological Methods, 2010, 81(3): 240-246.[19]Lan X, Yao Z, Zhou Y, Shang J, Lin H, Nuss D L, Chen B. Deletion of the cpku80 gene in the chestnut blight fungus, Cryphonectria parasitica, enhances gene disruption efficiency. Current Genetics, 2008, 53(1): 59-66.[20]Yu J H, Hamari Z, Han K H, Seo J A, Reyes-Dominguez Y, Scazzocchio C. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genetics and Biology, 2004, 41(11): 973-981.[21]Paz Z, Garcia-Pedrajas M D, Andrews D L, Klosterman S J, Baeza- Montanez L, Gold S E. One step construction of Agrobacterium- Recombination-ready-plasmids (OSCAR), an efficient and robust tool for ATMT based gene deletion construction in fungi. Fungal Genetics and Biology, 2011, 48(7): 677-684.[22]Mullins E D, Kang S. Transformation: a tool for studying fungal pathogens of plants. Cellular and Molecular Life Sciences, 2001, 58(14): 2043-2052.[23]Tzima A, Paplomatas E J, Rauyaree P, Kang S. Roles of the catalytic subunit of cAMP-dependent protein kinase A in virulence and development of the soilborne plant pathogen Verticillium dahliae. Fungal Genetics and Biology, 2010, 47(5): 406-415.[24]Tzima A K, Paplomatas E J, Tsitsigiannis D I, Kang S. The G protein beta subunit controls virulence and multiple growth- and development- related traits in Verticillium dahliae. Fungal Genetics and Biology, 2012, 49(4): 271-283.[25]Khang C H, Park S Y, Lee Y H, Kang S. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genetics and Biology, 2005, 42(6): 483-492. |