中国农业科学 ›› 2018, Vol. 51 ›› Issue (18): 3600-3613.doi: 10.3864/j.issn.0578-1752.2018.18.016
郭睿1(), 耿四海1(
), 熊翠玲1, 郑燕珍1, 付中民1, 王海朋1, 杜宇1, 童新宇1, 赵红霞2, 陈大福1(
)
收稿日期:
2018-03-17
接受日期:
2018-05-08
出版日期:
2018-09-16
发布日期:
2018-09-16
作者简介:
联系方式:郭睿,E-mail:
基金资助:
Rui GUO1(), SiHai GENG1(
), CuiLing XIONG1, YanZhen ZHENG1, ZhongMin FU1, HaiPeng WANG1, Yu DU1, XinYu TONG1, HongXia ZHAO2, DaFu CHEN1(
)
Received:
2018-03-17
Accepted:
2018-05-08
Online:
2018-09-16
Published:
2018-09-16
摘要:
【目的】长链非编码RNA(lncRNA)在真核生物的基因表达、表观遗传和细胞周期调控等方面发挥重要功能。本研究旨在探究意大利蜜蜂(Apis mellifera ligustica, 简称意蜂)工蜂中肠发育过程中lncRNA的表达谱及其作用。【方法】利用RNA-seq技术和链特异性建库方法对意蜂7和10日龄工蜂中肠(Am7、Am10)进行深度测序,下机的原始数据经过Perl脚本过滤得到高质量有效读段。利用bowtie工具将有效读段比对核糖体数据库,进一步利用TopHat2软件将未比对到核糖体数据库上的数据比对到参考基因组。利用CPC和CNCI软件对转录本的编码能力进行预测。通过RT-PCR对部分lncRNA进行鉴定。利用edgeR软件进行差异表达lncRNA(DElncRNA)分析,进而预测lncRNA的上下游基因,并对上下游基因进行GO及KEGG代谢通路富集分析。联用RNAhybrid、Miranda和TargetScan软件预测DElncRNA靶向结合的miRNA及miRNA靶向结合的靶基因,并通过Cytoscape软件构建DElncRNAs-miRNAs-mRNAs的调控网络。最后,通过RT-qPCR验证测序数据的可靠性。【结果】Am7和Am10的深度测序分别获得134 802 058和147 051 470条原始读段,经严格过滤分别得到134 166 157和146 293 288条有效读段;共得到3 890个DElncRNA,包括2 005个上调lncRNA与1 885个下调lncRNA。RT-PCR验证结果显示共有8个lncRNA能扩增出符合预期的目的片段,表明预测出的lncRNA真实存在。DElncRNA的上下游基因数为1 793个,它们涉及42个GO条目,包括代谢进程、发育进程、细胞进程、应激反应和免疫系统进程等;这些上下游基因还涉及251条代谢通路,包括碳代谢、嘌呤代谢和脂肪酸的生物合成等物质代谢通路,硫代谢、甲烷代谢和氧化磷酸化等能量代谢通路,Hippo信号通路、Wnt信号通路和Notch信号通路等信号通路,溶酶体、内吞作用和泛素介导的蛋白水解等细胞免疫通路,以及MAPK信号通路、Jak-STAT信号通路和NF-kappa B信号通路等体液免疫通路,上述结果表明DElncRNA在意蜂中肠发育过程中参与物质和能量代谢、细胞生命活动和免疫调控。进一步分析发现TCONS_00020918可通过调控西方蜜蜂王浆主蛋白1编码基因在意蜂工蜂中肠的营养吸收、级型分化中发挥功能。DElncRNA的调控网络分析结果显示DElncRNA与miRNA、mRNA间存在复杂的调控关系,部分DElncRNA处于调控网络的中心位置且能靶向结合较多的miRNA,也有部分miRNA可被多个DElncRNA共同靶向,表明这些DElncRNA可能在中肠发育中发挥重要作用。随机挑取5个DElncRNA进行RT-qPCR验证,结果显示它们的表达量变化趋势与测序结果一致,证实了本研究测序数据的可靠性。【结论】差异表达长链非编码RNA(DElncRNA)广泛参与意蜂工蜂中肠的新陈代谢、细胞活动和免疫调控并作为竞争性内源RNA(ceRNA)发挥作用,研究结果为关键lncRNA的筛选和功能研究提供了必要的数据支持。
郭睿, 耿四海, 熊翠玲, 郑燕珍, 付中民, 王海朋, 杜宇, 童新宇, 赵红霞, 陈大福. 意大利蜜蜂工蜂中肠发育过程中长链非编码RNA的 差异表达分析[J]. 中国农业科学, 2018, 51(18): 3600-3613.
Rui GUO, SiHai GENG, CuiLing XIONG, YanZhen ZHENG, ZhongMin FU, HaiPeng WANG, Yu DU, XinYu TONG, HongXia ZHAO, DaFu CHEN. Differential Expression Analysis of Long Non-Coding RNAs During the Developmental Process of Apis mellifera ligustica Worker’s Midgut[J]. Scientia Agricultura Sinica, 2018, 51(18): 3600-3613.
表1
RT-seq 数据概览"
样品 Sample | 原始读段 Raw reads | 有效读段 Clean reads | 99.9%的碱基正确率 Q20 (%) | 99.99%的碱基正确率 Q30 (%) |
---|---|---|---|---|
Am7-1 | 160844082 | 160049106 (99.51%) | 97.41 | 94.00 |
Am7-2 | 129878194 | 129283918 (99.54%) | 97.56 | 94.19 |
Am7-3 | 113683898 | 113165446 (99.54%) | 97.52 | 94.03 |
Am10-1 | 160537248 | 159765346 (99.52%) | 97.27 | 93.84 |
Am10-2 | 149230808 | 148494716 (99.51%) | 97.28 | 93.77 |
Am10-3 | 131386354 | 130619802 (99.42%) | 96.98 | 93.34 |
表2
RT-PCR与RT-qPCR引物信息"
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) |
---|---|
1-F | GGCTGAAGATTTCGGATTC |
1-R | AGAAGGAGGCAAGGAGGAT |
2-F | GCAAAGACGGAAAGATGG |
2-R | CCGATGAGTGTGTTCAGTTT |
3-F | GCCTGTTAGCCATAGTAAGACG |
3-R | AGAGTGTTGAGCAGCGTTG |
4-F | CGAGGATGAGCAACTGACA |
4-R | GCTACGAGCCAGAAGTCTTT |
5-F | CGCAGTAATGAAAGCATAGG |
5-R | CGCATCGTGTAACCATAAGA |
6-F | CCTCTTGGAGATTCCGATACAG |
6-R | CGTTACCACCATTCAACACG |
7-F | CCTCTTGGAGATTCCGATACAG |
7-R | ACCATTCAACACGAGCACC |
8-F | CCTCTTGGAGATTCCGATACAG |
8-R | ACCACCATTCAACACGAGC |
RE1-F | GTTGCTCAAACATCCGAGT |
RE1-R | CGTTCCATCTTCCTCCAAG |
RE2-F | TCGTATTCTACAGGGCTTGG |
RE2-R | TCGCTTCCTTCGTTTAGG |
RE3-F | GGTTTACTATGCTCCGACGA |
RE3-R | GGTGATACCGATGGACTCA |
RE4-F | AGCCAACAGGTGAAATGTG |
RE4-R | AGGTGTCAGACTGCGGTAA |
RE5-F | CGTTTCTCGTGCTGCTCTCT |
RE5-R | AGATGCCACACTTGGATGG |
Actin-F | CACTCCTGCTATGTATGTCGC |
Actin-R | GGCAAAGCGTATCCTTCA |
[1] |
PARK D, JUNG J W, CHIO B S, JAYAKODI M, LEE J, LIM J, YU Y, CHOI Y S, LEE M L, PARK Y, CHOI I Y, YANG T Y, EDWARDS O R, NAH G, KWON H W.Uncovering the novel characteristics of Asian honey bee,Apis cerana, by whole genome sequencing. BMC Genomics, 2015, 16(1): 1.
doi: 10.1186/1471-2164-16-1 pmid: 25553907 |
[2] | National Research Council, Division on Earth and Life Studies, Board on Agriculture and Natural Resources, Board on Life Sciences. Committee on the Status of Pollinators in North America. Status of Pollinators in North America. Washington, D.C: National Academies Press, 2007. |
[3] | 周冰峰. 蜜蜂饲养管理学. 厦门: 厦门大学出版社, 2002. |
ZHOU B F.Feeding and Management of Honeybee. Xiamen: Xiamen University Publishing Company, 2002. (in Chinese) | |
[4] |
DJEBALI S, DAVIS C A, MERKEL A, DOBIN A, LASSMANN T, MORTAZAVI A, TANZER A, LAGARDE J, LIN W, SCHLESINGER F, XUE C, MARINOV G K, KHATUN J, WILLIAMS B A, ZALESKI C, ROZOWSKY J, RODER M, KOKOCINSKI F, ABDELHAMID R F, ALIOTO T, ANTOSHECHKIN I, BAER M T, BAR N S, BATUT P, BELL K, BELL I, CHAKRABORTTY S, CHEN X, CHRAST J, CURADO J, DERRIEN T, DRENKOW J, DUMAIS E, DUMAIS J, DUTTAGUPTA R, FALCONNET E, FASTUCAM, FEJES-TOTH K, FERREIRA P, FOISSAC S, FULLWOOD M J, GAO H, GONZALEZ D, GORDON A, GUNAWARDENA H, HOWALD C, JHA S, JOHNSON R, KAPRANOV P, KING B, KINGSWOOD C, LUO O J, PARK E, PERSAUD K, PREALL J B, RIBECA P, RISK B, ROBYR D, SAMMETH M, SCHAFFER L, SEE L H, SHAHAB A, SKANCKE J, SUZUKI A M, TAKAHASHI H, TILGNER H, TROUT D, WALTERS N, WANG H, WROBEL J, YU Y, RUAN X, HAYASHIZAKI Y, HARROW J, GERSTEIN M, HUBBARD T, REYMOND A, ANTONARAKIS S E, HANNON G, GIDDINGS M C, RUAN Y, WOLD B, CARNINCI P, GUIGO R, GINGERAS T R. Landscape of transcription in human cells. Nature, 2012, 489(7414): 101-108.
doi: 10.1038/nature11233 pmid: 3684276 |
[5] |
GORODKIN J, HOFACKER I L.From structure prediction to genomic screens for novel non-coding RNAs. PLoS Computational Biology, 2011, 7(8): e1002100.
doi: 10.1371/journal.pcbi.1002100 pmid: 21829340 |
[6] |
KANDURI C.Kcnq1ot1: a chromatin regulatory RNA. Seminars in Cell & Developmental Biology, 2011, 22(4): 343-350.
doi: 10.1016/j.semcdb.2011.02.020 pmid: 21345374 |
[7] |
TRIPATHI V, SHEN Z, CHAKRABORTY A, GIRI S, FREIER S M, WU X, ZHANG Y, GOROSPE M, PRASANTH S G, LAL A, PRASANTH K V.Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genetics, 2013, 9(3): e1003368.
doi: 10.1371/journal.pgen.1003368 pmid: 23555285 |
[8] |
LI M, SUN X, CAI H, SUN Y, PLATH M, LI C, LAN X, LEI C, LIN F, BAI Y, CHEN H.Long non-coding RNA ADNCR suppresses adipogenic differentiation by targeting miR-204. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2016, 1859(7): 871-882.
doi: 10.1016/j.bbagrm.2016.05.003 pmid: 27156885 |
[9] |
ULITSKY I, BARTEL D P.LincRNAs: genomics, evolution, and mechanisms. Cell, 2013, 154(1): 26-46.
doi: 10.1016/j.cell.2013.06.020 pmid: 3924787 |
[10] |
HUNG T, WANG Y, LIN M F, KOEGEL A K, KOTAKE Y, GRANT G D, HORLINGS H M, SHAH N, UMBRICHT C, WANG P, WANG Y, KONG B, LANEROD A, BORRESEN-DALE A L, KIM S K, VAN D V M, SUKUMAR S, WHITFIELD M L, KELLIS M, XIONG Y, WONG D J, CHANG H Y. Extensive and coordinated transcription of noncoding RNAs within cell cycle promoters. Nature Genetics, 2011, 43(7): 621-629.
doi: 10.1038/ng.848 pmid: 3652667294610 |
[11] |
YOON J H, ABDELMOHSEN K, SRIKANTAN S, YANG X, MARTINDALE J L, DE S, HUARTE M, BECKER K G, GOROSPE M.LincRNA-p21 suppresses target mRNA translation. Molecular Cell, 2012, 47(4): 648-655.
doi: 10.1016/j.molcel.2012.06.027 pmid: 22841487 |
[12] |
CHOONIEDASS-KOTHARI S, EMBERLEY E, HAMEDANI M K, TROUP S, WANG X, CZOSNEK A, HUBE F, MUTAWE M, WATSON P H, LEYGUE E.The steroid receptor RNA activator is the first functional RNA encoding a protein. FEBS Letters, 2004, 566(1/3): 43-47.
doi: 10.1016/j.febslet.2004.03.104 pmid: 15147866 |
[13] |
OGAWA Y, SUN B K, LEE J T.Intersection of the RNA interference and X-inactivation pathways. Science, 2008, 320(5881): 1336-1341.
doi: 10.1126/science.1157676 pmid: 18535243 |
[14] |
KENIRY A, OXLEY D, MONNIER P, KYBA M, DANDOLO L, SMITS G, REIK W.The H19 lincRNA is a developmental reservoir of miR-675 which suppresses growth and Igf1r. Nature Cell Biology, 2012, 14(7): 659-665.
doi: 10.1038/ncb2521 |
[15] |
MUDGE J M, HARROW J.Creating reference gene annotation for the mouse C57BL6/J genome assembly. Mammalian Genome, 2015, 26(9/10): 366-378.
doi: 10.1007/s00335-015-9583-x pmid: 4602055 |
[16] |
HON C C, RAMILOWSKI J A, HARSHBARGER J, BERTIN N, GOUGH J, DENISENKO E, SCHMEIER S, POULSEN T M, SEVERIN J, LIZIO M, KAWAJI H, KASUKAWA T, ITOH M, BURROUGHS A M, NOMA S, DJEBALI S, ALAM T, MEDVEDEVA Y A, TESTA A C, LIPOVICH L, YIP C W, ABUGESSAISA I, MENDEZ M, HASEGAWA A, TANG D, LASSMANN T, HEUTINK P, BABINA M, WELLS C A, KOJIMA S, NAKAMURA Y, SUZUKI H, DAUB C O, DE-HOON M J, ARNER E, HAYASHIZAKI Y, CARNINCI P, FORREST A R. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature, 2017, 543(7644): 199-204.
doi: 10.1038/nature21374 pmid: 28241135 |
[17] |
朱斌, 梁沛, 高希武. 长链非编码RNA (lncRNA)及其在昆虫学研究中的进展. 昆虫学报, 2016, 59(11): 1272-1281.
doi: 10.16380/j.kcxb.2016.11.016 |
ZHU B, LIANG P, GAO X W.Long noncoding RNAs (lncRNAs) and their research advances in entomology. Acta Entomologica Sinica, 2016, 59(11): 1272-1281. (in Chinese)
doi: 10.16380/j.kcxb.2016.11.016 |
|
[18] | 郭昱, 苏松坤, 陈盛禄, 张少吾, 陈润生. LncRNA在蜜蜂级型分化中的功能研究. 生物化学与生物物理进展, 2015, 42(8): 750-757. |
GUO Y, SU S K, CHEN C L, ZHANG S W, CHEN R S.The function of lncRNAs in the caste determination of the honeybee. Progress in Biochemistry and Biophysics, 2015, 42(8): 750-757. (in Chinese) | |
[19] |
HUMANN F C, TIBERIO G J, HARTFELDER K.Sequence and expression characteristics of long noncoding RNAs in honey bee caste development-potential novel regulators for transgressive ovary size. PLoS ONE, 2013, 8(10): e78915.
doi: 10.1371/journal.pone.0078915 pmid: 3814967 |
[20] |
CHEN X, MA C, CHEN C, LU Q, SHI W, LIU Z G, WANG H H, GUO H K.Integration of lncRNA-miRNA-mRNA reveals novel insights into oviposition regulation in honey bees.PeerJ, 2017, 5: e3881.
doi: 10.7717/peerj.3881 pmid: 5632538 |
[21] |
JAYAKODI M, JUNG J W, PARK D, AHN Y J, LEE S C, SHIN S Y, CHIN C,YANG T J, KWON H W.Genome-wide characterization of long intergenic non-coding RNAs (lincRNAs) provides new insight into viral diseases in honey beesApis cerana and Apis mellifera. BMC Genomics, 2015, 16(1): 680.
doi: 10.1186/s12864-015-1868-7 pmid: 4559890 |
[22] |
BABENDREIER D, JOLLER D, ROMEIS J, BIGLER F, WIDMER F.Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiology Ecology, 2007, 59(3): 600-610.
doi: 10.1111/fem.2007.59.issue-3 |
[23] |
KOCH H, ABROL D P, LI J, SCHMID-HEMPEL P.Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Molecular Ecology, 2013, 22(7): 2028-2044.
doi: 10.1111/mec.12209 pmid: 23347062 |
[24] |
ELLEGAARD K M, TAMARIT D, JAVELIND E, OLOFSSON T C, ANDERSSON S G, VASQUEZ A.Extensive intra-phylotype diversity in lactobacilli and bifidobacteria from the honeybee gut. BMC Genomics, 2015, 16(1): 284.
doi: 10.1186/s12864-015-1476-6 |
[25] |
MOHR K I, TEBBE C C.Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environmental Microbiology, 2006, 8(2): 258-272.
doi: 10.1111/j.1462-2920.2005.00893.x pmid: 16423014 |
[26] |
ENGEL P, MARTINSON V G, MORAN N A.Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(27): 11002-11007.
doi: 10.4161/gmic.22517 |
[27] | GILLIAM M, VALENTINE D K.Enterobacteriaceae isolated from foraging worker honey bees,Apis mellifera. Journal of Invertebrate Pathology, 1974, 23(1): 38-41. |
[28] |
LANGMEND B, TRAPNELL C, POP M, SALZBERG S L.Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 2009, 10(3): R25.
doi: 10.1186/gb-2009-10-3-r25 pmid: 19261174 |
[29] |
KIM D, PERTEA G, TRAPNELL C, PIMENTEL H, KELLEY R, SALZBERG S L.TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 2013, 14(4): R36.
doi: 10.1186/gb-2013-14-4-r36 |
[30] | Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybeeApis mellifera. Nature, 2006, 443(7114): 931-949. |
[31] |
KONG L, ZHANG Y, YE Z Q, LIU X Q, ZHAO S Q, WEI L, GAO G.CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Research, 2007, 35(Web Server issue): 345-349.
doi: 10.1093/nar/gkm391 pmid: 1933232 |
[32] |
SUN L, LUO H, BU D, ZHAO G, YU K, ZHANG C, LIU Y, CHEN R, ZHAO Y.Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Research, 2013, 41(17): e166.
doi: 10.1093/nar/gkt646 |
[33] |
ROBINSON M D, MCCARTHY D J, SMYTH G K.EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1): 139-140.
doi: 10.1093/bioinformatics/btp616 |
[34] |
REHMSMEIER M, STEFFEN P, HOCHSMANN M, GIEGERICH R.Fast and effective prediction of microRNA/target duplexes. RNA, 2004, 10(10): 1507-1517.
doi: 10.1261/rna.5248604 pmid: 15383676 |
[35] |
BETEL D, WILSON M, GABOW A, MARKS D S, SANDER C.The microRNA.org resource: targets and expression. Nucleic Acids Research, 2008, 36(Database issue): 149-153.
doi: 10.1093/nar/gkm995 pmid: 18158296 |
[36] |
ALLEN E, XIE Z, GUSTAFSON A M, CARRINGTON J C.MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005, 121(2): 207-221.
doi: 10.1016/j.cell.2005.04.004 pmid: 15851028 |
[37] |
SMOOT M E, ONO K, RUSCHEINSKI J, WANG P L, IDEKER T.Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 2011, 27(3): 431-432.
doi: 10.1093/bioinformatics/btq675 |
[38] |
SALMENA L, POLISENO L, TAY Y KATS L, PANDOLFI P P. AceRNA hypothesis: The Rosetta stone of a hidden RNA language? Cell, 2011, 146(3): 353-358.
doi: 10.1016/j.cell.2011.07.014 pmid: 3235919 |
[39] |
FLIRIAN K, JOSHUA T M.Functional classification and experimental dissection of long noncoding RNAs.Cell, 2018, 172(3): 393-407.
doi: 10.1016/j.cell.2018.01.011 |
[40] | 赵亚周, 田文礼, 胡熠凡, 彭文君. 蜜蜂蜂王浆主蛋白 (MRJPs)的研究进展. 应用昆虫学报, 2012, 49(5): 1345-1353. |
ZHAO Y Z, TIAN W L, HU Y F, PENG W J.Research advances in major royal jelly proteins of honeybee. Chinese Journal of Applied Entomology, 2012, 49(5): 1345-1353. (in Chinese) | |
[41] |
HALDER G, JOHNSON R L.Hippo signaling: growth control and beyond. Development, 2011, 138(1): 9-22.
doi: 10.1242/dev.045500 pmid: 21138973 |
[42] |
PAN D.The hippo signaling pathway in development and cancer. Developmental Cell, 2010, 19(4): 491-505.
doi: 10.1016/j.devcel.2010.09.011 pmid: 3124840 |
[43] |
CAMARGO F D, GOKHALE S, JOHNNIDIS J B, FU D, BELL G W, JAENISCH R, BRUMMELKAMP T R.YAP1 increases organ size and expands undifferentiated progenitor cells. Current Biology, 2007, 17(23): 2054-2060.
doi: 10.1016/j.cub.2007.10.039 pmid: 17980593 |
[44] |
BITEAU B, HOCHMUTH C E, JASPER H.JNK activity in somatic stem cells causes loss of tissue homeostasis in the agingDrosophila gut. Cell Stem Cell, 2008, 3(4): 442-455.
doi: 10.1016/j.stem.2008.07.024 pmid: 18940735 |
[45] | ORIHEL T C.The peritrophic membrane: its role as a barrier to infection of the arthropod host//Invertebrate Immunity. Academic Press, 1975: 65-73. |
[46] |
ARONSTEIN K A, MURRAY K D.Chalkbrood disease in honey bees. Journal of Invertebrate Pathology, 2010, 103(Suppl. 1): 20-29.
doi: 10.1016/j.jip.2009.06.018 pmid: 19909969 |
[47] |
KARRENTH F A, TAY Y, PERNA D, ALA U, TAN S M, RUST A G, DENICOLA G, WEBSTER K A, WEISS D, PEREZ-MANCERA P A, KRAUTHAMMER M, HALABAN R, PROVERO P, ADAMS D J, TUVESON D A, PANDOLFI P P.In vivo identification of tumor suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell, 2011, 147(2): 382-395.
doi: 10.1016/j.cell.2011.09.032 pmid: 3236086 |
[48] |
COLLINS D H, MOHORIANU I, BECKERS M, MOULTON V, DALMAY T, BOURKE A F.MicroRNAs associated with caste determination and differentiation in a primitively eusocial insect. Scientific Reports, 2017, 7: 45674.
doi: 10.1038/srep45674 pmid: 28361900 |
[49] |
LI E H, ZHAO X, ZHANG C, LIU W.Fragile X mental retardation protein participates in non-coding RNA pathways. Hereditas, 2018, 40(2): 87-94.
doi: 10.16288/j.yczz.17-255 pmid: 29428901 |
[1] | 吴艳,张昊,梁振华,潘爱銮,申杰,蒲跃进,黄涛,皮劲松,杜金平. circ-13267通过let-7-19/ERBB4通路调控蛋鸭卵泡颗粒细胞凋亡[J]. 中国农业科学, 2022, 55(8): 1657-1666. |
[2] | 李世佳,吕紫敬,赵锦. 枣R2R3-MYB亚家族基因鉴定及其在果实发育中的表达分析[J]. 中国农业科学, 2022, 55(6): 1199-1212. |
[3] | 由玉婉,张雨,孙嘉毅,张蔚. ‘月月粉’月季NAC家族全基因组鉴定及皮刺发育相关成员的筛选[J]. 中国农业科学, 2022, 55(24): 4895-4911. |
[4] | 马玉峰,周忠雄,李雨桐,高雪琴,乔亚丽,张文斌,颉建明,胡琳莉,郁继华. 氮素水平及形态对娃娃菜根系特征及生理指标的影响[J]. 中国农业科学, 2022, 55(2): 378-389. |
[5] | 王荣华,孟丽峰,冯毛,房宇,魏俏红,马贝贝,钟未来,李建科. 蜂王浆高产蜜蜂与意大利蜜蜂哺育蜂唾液腺蛋白质组分析[J]. 中国农业科学, 2022, 55(13): 2667-2684. |
[6] | 张承启,廖露露,齐永霞,丁克坚,陈莉. 禾谷镰孢核孔蛋白基因FgNup42的功能分析[J]. 中国农业科学, 2021, 54(9): 1894-1903. |
[7] | 李晓颍, 武军凯, 王海静, 李梦园, 申艳红, 刘建珍, 张立彬. 欧李果实发育期内挥发性成分变化特征[J]. 中国农业科学, 2021, 54(9): 1964-1980. |
[8] | 杜宇,范小雪,蒋海宾,王杰,冯睿蓉,张文德,余岢骏,隆琦,蔡宗兵,熊翠玲,郑燕珍,陈大福,付中民,徐国钧,郭睿. 微小RNA介导意大利蜜蜂工蜂对东方蜜蜂微孢子虫的跨界调控[J]. 中国农业科学, 2021, 54(8): 1805-1820. |
[9] | 陈茜,刘英杰,董勇浩,刘金燕,李炜,徐蓬军,臧云,任广伟. 黄瓜花叶病毒侵染烟草对烟蚜生长发育、取食和选择行为的影响[J]. 中国农业科学, 2021, 54(8): 1673-1683. |
[10] | 侯彤瑜,郝婷丽,王海江,张泽,吕新. 棉花生长发育模型及其在我国的研究和应用进展[J]. 中国农业科学, 2021, 54(6): 1112-1126. |
[11] | 宣旭娴,盛子璐,解振强,黄雨晴,巩培杰,张川,郑婷,王晨,房经贵. vvi-miR172s及其靶基因响应赤霉素调控葡萄果实发育的作用分析[J]. 中国农业科学, 2021, 54(6): 1199-1217. |
[12] | 王文然,解振强,诸葛雅贤,白云赫,管乐,吴伟民,张培安,郑婷,房经贵,王晨. GA3介导miR171s及其靶基因VvSCLs调控葡萄种子发育的作用分析[J]. 中国农业科学, 2021, 54(2): 357-369. |
[13] | 陈华枝,王杰,祝智威,蒋海宾,范元婵,范小雪,万洁琦,卢家轩,郑燕珍,付中民,徐国钧,陈大福,郭睿. 蜜蜂球囊菌菌丝和孢子中长链非编码RNA的比较及潜在功能分析[J]. 中国农业科学, 2021, 54(2): 435-448. |
[14] | 李昕芫, 娄金秀, 刘清源, 胡健, 张英俊. 中国东北和华北地区紫花苜蓿根瘤菌遗传多样性研究[J]. 中国农业科学, 2021, 54(16): 3393-3405. |
[15] | 许子怡,程行,沈奇,赵亚男,汤佳玉,刘喜. 水稻黄绿叶突变体ygl3的鉴定与基因功能分析[J]. 中国农业科学, 2021, 54(15): 3149-3157. |
|