中国农业科学 ›› 2020, Vol. 53 ›› Issue (21): 4322-4332.doi: 10.3864/j.issn.0578-1752.2020.21.002

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米雄性不育系晋玉1A的选育及其特性

张欢欢1(),崔贵梅2(),王长彪1,王晓清1,郝曜山1,杜建中1,王亦学1,孙毅1()   

  1. 1山西农业大学生命科学学院/农业部黄土高原作物基因资源与种质创制重点实验室,太原 030031
    2山西大丰种业有限公司,太原 030031
  • 收稿日期:2019-12-14 接受日期:2020-03-07 出版日期:2020-11-01 发布日期:2020-11-11
  • 通讯作者: 孙毅
  • 作者简介:张欢欢,E-mail:frank.red@163.com|崔贵梅,E-mail:guimeicui@126.com
  • 基金资助:
    国家转基因生物新品种培育科技重大专项(2016ZX08003-001);山西省重点研发计划(201803D221017-2);山西省农业科学院农业科技创新研究课题(YCX2018D2YS07)

Breeding and Characteristics of a New Male Sterile Line of Maize, Jinyu1A

ZHANG HuanHuan1(),CUI GuiMei2(),WANG ChangBiao1,WANG XiaoQing1,HAO YaoShan1,DU JianZhong1,WANG YiXue1,SUN Yi1()   

  1. 1College of Life Sciences, Shanxi Agricultural University/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031
    2The Seed Industry Limited Company of Shanxi Dafeng, Taiyuan 030031
  • Received:2019-12-14 Accepted:2020-03-07 Online:2020-11-01 Published:2020-11-11
  • Contact: Yi SUN

摘要:

【目的】 利用分子生物学和细胞学方法确定晋玉1A的雄性不育类型,鉴定玉米种质资源对该不育系的恢保关系,并测定其一般配合力和特殊配合力,为应用晋玉1A雄性不育系开展杂交育种工作提供依据。【方法】在海南乐东、山西晋中、忻州和运城,调查晋玉1A连续3年田间的育性;对晋玉1A与郑58的雄花、花药、花粉进行观察比较;对晋玉1A与昌7-2杂交F1代的花粉进行I2-KI染色观察;用专性PCR方法对晋玉1A的不育类型进行鉴定;以晋玉1A作母本,与158个自交系进行测配,对F1代进行田间育性调查,以筛查与之适配的恢复系与保持系;对以晋玉1A配制的可育杂交种F2代群体和BC1群体,进行育性调查;对晋玉1A及郑58与10个玉米自交系杂交F1代的籽粒产量性状进行一般配合力和特殊配合力分析。【结果】晋玉1A在以上4个地点,连续3年的田间不育性状保持稳定。晋玉1A与郑58的雄花外形相似,但其颖壳不开裂,花药不外露,无花粉散出。I2-KI染色表明,晋玉1A的花粉完全败育。对晋玉1A与昌7-2杂交F1代植株花粉的显微观察表明,64.4%的花粉粒能够被I2-KI正常染色,35.6%花粉粒败育,说明该不育系属于配子体不育类型。经专性PCR鉴定,晋玉1A和昌7-2的细胞质都属于S型雄性不育细胞质类型。昌7-2核基因组携带恢复基因,掩盖了其细胞质雄性不育的表型。郑用琏等设计的专性鉴定引物特异性更强。在以晋玉1A作母本进行测配的158个自交系中,鉴定出96个保持类型,47个恢复类型和15个半恢复类型。在以晋玉1A配制的可育杂交种F2代群体中,存在3.1%—8.7%的不育株,表明恢复系中存在微效恢复基因。晋玉1A和郑58分别与10个自交系配制的同父异母杂交种之间籽粒产量差异不显著;对这些杂交种F1代配合力分析表明,晋玉1A的一般配合力略高于郑58。【结论】晋玉1A属于S型胞质雄性不育系,其不育性状稳定,花粉完全败育,在现有玉米种质资源中有一定量的恢复与保持类型材料。它与昌7-2杂交的F1代植株能够产生正常雄穗并散出可育花粉。微效恢复基因的存在使得花粉可染率向可育方向偏移,并导致F2群体中出现不育株。用晋玉1A和郑58分别与相同父本配制的杂交种间的产量均无显著差异,晋玉1A的一般配合力比郑58略高,可以在玉米杂交种选配中使用,也可用于转育新的不育系。

关键词: 玉米, 雄性不育, 恢复基因, 配合力

Abstract:

【Objective】The study was aimed to determine the type of the male sterile line of maize, Jinyu1A, by molecular biology and cytology approaches, identify restoring and maintaining relationships of maize germplasm resources to the sterile line, and to test its general combining ability (GCA) and specific combining ability (SCA).【Method】The stability of sterility of Jinyu1A was investigated at 4 locations (Ledong, Jinzhong, Xinzhou and Yuncheng) for successive 3 years. Tassel, anther and pollen grains of Jinyu1A was observed and compared with Zheng58. F1 pollen grains of Jinyu1A×Chang7-2 were observed by I2-KI staining. The sterility type of Jinyu1A was identified by specific PCR. Jinyu1A was used as the female parent and test-crossed with 158 maize inbred lines. The fertility of F1 plants was investigated to screen for the suitable restorer and maintainer lines. The fertility of F2 and BC1 population plants was investigated. The grain yield general combining ability and specific combining ability of Jinyu1A were estimated by analyzing the data of its F1 hybrids.【Result】The sterility characters of Jinyu1A were stable in the 4 locations for the 3 years. The appearance of tassel of Jinyu1A was similar to that of Zheng58, but its glumes were closed, anthers were withered and could not exert out of the glumes, and I2-KI staining showed that the pollen of Jinyu1A was completely sterile. The microscopical observation on the pollen grains of F1 hybrid plants of Jinyu1A and Chang7-2 showed that 64.4% of the pollen grains could be stained dark by I2-KI and 35.6% pollen grains were aborted, which indicated that the sterile line belonged to S-type cytoplasmic sterile lines. The cytoplasm of Jinyu1A and Chang7-2 were identified as S-type male sterile type by specific PCR. The nuclear genome of Chang7-2 carries restorer genes, which concealed the phenotype of cytoplasmic male sterility. The specific primers suggested by ZHENG et al. were more applicable for categorizing maize cytoplasm sterile types. Among 158 inbred lines test-crossed with Jinyu1A as female parent, 96 maintainers, 47 restorers, and 15 semi-restorers were identified. There were 3.1%-8.7% sterile plants in F2 populations derived from fertile F1 plants of crosses between Jinyu1A and the restorer lines, which indicated that there were minor effect restorer genes in the restorer lines. There was no significant difference in the grain yields of the hybrids between each of Jinyu1A and Zheng58 as females and other 10 inbred lines as males, respectively. However, the F1 combining ability analysis of these hybrids showed that the general combining ability of Jinyu1A was slightly higher than that of Zheng58.【Conclusion】Jinyu1A was a S-type cytoplasmic male sterile line with stable male sterile characters and completely aborted pollen grains. There are a certain amount of restorer and maintainer type breeding stocks for Jinyu1A in the present maize germplasm resources. F1 plants of its hybrid with Chang7-2 could produce normal panicles and disperse fertile pollen. The existence of minor effect restorer gene(s) made the pollen dyeability shift to the direction of fertility, which led to the emergence of a few fertile plants in F2 populations. There was no significant difference in the grain yield between the hybrids with Jinyu1A and Zheng58 each as female parents test-crossed with the same male parents. The general combining ability of Jinyu1A was slightly higher than that of Zheng58, indicating that it could be used in the breeding programs for selecting new maize hybrids and male sterile lines.

Key words: maize, male sterility, restorer gene, combining ability