中国农业科学 ›› 2020, Vol. 53 ›› Issue (12): 2321-2330.doi: 10.3864/j.issn.0578-1752.2020.12.001
收稿日期:
2019-09-04
出版日期:
2020-06-16
发布日期:
2020-06-25
通讯作者:
蒲宗君
作者简介:
刘培勋,Tel:028-84504231;E-mail:littlefarmer@163.com。
基金资助:
LIU PeiXun,WAN HongShen,ZHENG JianMin,LUO JiangTao,PU ZongJun()
Received:
2019-09-04
Online:
2020-06-16
Published:
2020-06-25
Contact:
ZongJun PU
摘要:
【目的】PIN(puroindoline)是植物所特有的一类蛋白家族,对控制小麦籽粒硬度有重要功能。分析小麦PIN家族成员在全基因组的分布、结构及进化,研究其在不同组织的表达特异性以及在不同硬度种子的表达模式,为阐明小麦PIN基因家族的生物学功能奠定基础。【方法】根据已报道的小麦PIN基因和大麦HIN基因,利用BLASTP和HMM方法,在最新发布的小麦中国春参考序列中鉴定小麦PIN基因家族成员。利用UniProt、URGI、PFAM、CDD、expVIP等数据库,采用Clustal X、MEGA 7.0、ExPASy、MEME、GSDS、TB tools、GraphPad Prism5等软件进行生物信息学分析。采用qRT-PCR方法检测TaPIN基因家族在不同籽粒硬度小麦样品中的表达情况。【结果】共鉴定出19个小麦PIN基因,集中成簇分布于第1、5和7染色体同源群,编码148—327个氨基酸,编码蛋白相对分子量为16.39—37.19 kD,等电点为6.35—9.34。通过结构域和系统发育分析,可将19个TaPIN基因分为A和B两大类。大部分TaPINs基因仅有1个外显子,没有内含子,顺式作用元件分析发现其上游序列包含大量抗逆和种子发育相关的调控元件。转录组分析表明该基因家族在小麦籽粒中相对表达量很高,而在根茎叶等其他组织几乎不表达。实时荧光定量PCR表明,各基因间相对表达量差异显著,TaPIN9和TaPIN10表达量较高。随着小麦籽粒硬度降低,TaPIN9和TaPIN10表达上调,且表达比例增加,而TaPIN16和TaPIN6则呈现相反的趋势。【结论】小麦籽粒硬度的调节以Pina和Pinb为主,该基因家族其他成员也具有相同结构域,推测也具有相似功能,但受表达量低的限制,对籽粒硬度影响较小。从该基因的进化关系看,粗山羊草与小麦亲缘关系最近,其次是燕麦、黑麦和大麦。
刘培勋,万洪深,郑建敏,罗江陶,蒲宗君. 小麦PIN基因家族的鉴定及表达分析[J]. 中国农业科学, 2020, 53(12): 2321-2330.
LIU PeiXun,WAN HongShen,ZHENG JianMin,LUO JiangTao,PU ZongJun. Genome-Wide Identification and Expression Analysis of PIN Genes Family in Wheat[J]. Scientia Agricultura Sinica, 2020, 53(12): 2321-2330.
表1
TaPINs实时荧光定量PCR分析所用引物"
基因名称 Gene name | 正向引物序列 Forward primer sequence (5′-3′) | 反向引物序列 Revers primer sequence (5′-3′) |
---|---|---|
TaPIN6 | TATGCCGCTCTCTTGGGT | GATCGCCTTGGATTGATG |
TaPIN7 | AGCTATGCAAGCTCCCAC | CACAACTTCTCTTCCCCC |
TaPIN8 | TATGCCGCTCTCTTGGTT | GATCGCCTTGGATTGATG |
TaPIN9 | AGCTCCTTGGGGAGTGTT | CAGGTTCTTGGCTTCTTG |
TaPIN14 | GGCGGTGAAGGGTTTTTC | GCTATCGGGCGTAGTTGC |
TaPIN15 | AAGGATTATGTGATGGAG | GCTGGTAACACTGGTCTA |
TaPIN16 | AAAGAAGTGCCGATGTGAGG | GCTGAAAGCCAAAGACGC |
TaPIN19 | TGTGAACAAGAAGCCCTA | TGCTGAAAACCAAAGATG |
TaPIN10 | TGAGCATGAGGTTCGGGA | TTGCACTTTGAGGGGAGG |
β-Actin | ATGTACCGTGGTGATGTT | CCTGGTGGCTGGTAGTTG |
[1] | GREENWELL P, SCHOFIELD J D. A starch granule protein associated with endosperm softness in wheat. Cereal Chemistry, 1986,63:379. |
[2] |
JOLLY C J, RAHMAN S, KORTT A A, HIGGINS T J V. Characterisation of the wheat Mr 15000 "grain-softness protein" and analysis of the relationship between its accumulation in the whole seed and grain softness. Theoretical and Applied Genetics, 1993,86(5):589-597.
doi: 10.1007/BF00838714 pmid: 24193708 |
[3] | GIROUX M J, MORRIS C F. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(11):6262-6266. |
[4] |
HEINZE K, KISZONAS A M, MURRAY J C, MORRIS C F, LULLIEN-PELLERIN V. Puroindoline genes introduced into durum wheat reduce milling energy and change milling behavior similar to soft common wheats. Journal of Cereal Science, 2016,71:183-189.
doi: 10.1016/j.jcs.2016.08.016 |
[5] |
GASPARIS S, ORCZYK W, ZALEWSKI W, NADOLSKA-ORCZYK A. The RNA-mediated silencing of one of the Pin genes in allohexaploid wheat simultaneously decreases the expression of the other, and increases grain hardness. Journal of Experimental Botany, 2011,62(11):4025-4036.
doi: 10.1093/jxb/err103 |
[6] |
WILEY P R, TOSI P, EVRARD A, LOVEGROVE A, JONES H D, SHEWRY P R. Promoter analysis and immunolocalisation show that puroindoline genes are exclusively expressed in starchy endosperm cells of wheat grain. Plant Molecular Biology, 2007,64(1/2):125-136.
doi: 10.1007/s11103-007-9139-x |
[7] | 陈锋, 董中东, 程西永, 詹克慧, 许海霞, 崔党群. 小麦puroindoline及其相关基因分子遗传基础研究进展. 中国农业科学, 2010,43(6):1108-1116. |
CHEN F, DONG Z D, CHENG X Y, ZHAN K H, XU H X, CUI D Q. Advances in research of molecular genetics of puroindoline and its related genes in wheat. Scientia Agricultura Sinica, 2010,43(6):1108-1116. (in Chinese) | |
[8] |
FEIZ L, MARTIN J M, GIROUX M J. Creation and functional analysis of new Puroindoline, alleles in Triticum aestivum. Theoretical and Applied Genetics, 2009,118(2):247-257.
doi: 10.1007/s00122-008-0893-1 |
[9] |
WILKINSON M, WAN Y, TOSI P, LEVERINGTON M, SNAPE J, MITCHELL R A, SHEWRY P R. Identification and genetic mapping of variant forms of puroindoline b expressed in developing wheat grain. Journal of Cereal Science, 2008,48(3):722-728.
doi: 10.1016/j.jcs.2008.03.007 |
[10] |
ALI I, SARDAR Z, RASHEED A, MAHMOOD T. Molecular characterization of the puroindoline-a and b alleles in synthetic hexaploid wheats and in silico functional and structural insights into Pina-D1. Journal of Theoretical Biology, 2015,376:1-7.
doi: 10.1016/j.jtbi.2015.04.001 pmid: 25865523 |
[11] |
GOLLAN P, SMITH K, BHAVE M. Gsp-1 genes comprise a multigene family in wheat that exhibits a unique combination of sequence diversity yet conservation. Journal of Cereal Science, 2007,45(2):184-198.
doi: 10.1016/j.jcs.2006.07.011 |
[12] |
WILKINSON M, WAN Y, TOSI P, LEVERINGTON M, SNAPE J, MITCHELL R A, SHEWRY P R. Identification and genetic mapping of variant forms of puroindoline b expressed in developing wheat grain. Journal of Cereal Science, 2008,48(3):722-728.
doi: 10.1016/j.jcs.2008.03.007 |
[13] |
CHEN F, BEECHER B S, MORRIS C F. Physical mapping and a new variant of puroindoline b-2genes in wheat. Theoretical and Applied Genetics, 2010,120(4):745-751.
doi: 10.1007/s00122-009-1195-y |
[14] | 王月福, 于振文, 李尚霞, 余松烈. 施氮量对小麦籽粒蛋白质组分含量及加工品质的影响. 中国农业科学, 2002,35(9):1071-1078. |
WANG Y F, YU Z W, LI S X, YU S L. Effects of nitrogen application amount on content of protein components and processing quality of wheat grain. Scientia Agricultura Sinica, 2002,35(9):1071-1078. (in Chinese) | |
[15] | 李友军, 熊瑛, 骆炳山. 氮、钾及其互作对两种质型小麦品质性状的影响. 干旱地区农业研究, 2006,24(2):43-47. |
LI Y J, XIONG Y, LUO B S. Effects of nitrogen, potassium and their interactions on quality characteristics of two different gluten wheat cultivars. Agricultural Research in the Arid Areas, 2006,24(2):43-47. (in Chinese) | |
[16] |
UniProt: The universal protein knowledgebase. Nucleic Acids Research, 2016,45(D1):D158-D169.
doi: 10.1093/nar/gkw1099 pmid: 27899622 |
[17] |
DAY L, BHANDARI D G, GREENWELL P, LEONARD S A, SCHOFIELD J D. Characterization of wheat puroindoline proteins. FEBS Journal, 2006,273(23):5358-5373.
doi: 10.1111/j.1742-4658.2006.05528.x pmid: 17076702 |
[18] |
BEECHER B, BOWMAN J, MARTIN J M, BETTGE A D, MORRIS C F, BLAKE T K, GIROUX M J. Hordoindolines are associated with a major endosperm-texture QTL in barley (Hordeum vulgare). Genome, 2002,45(3):584-591.
doi: 10.1139/g02-008 pmid: 12033628 |
[19] |
ALAUX M, ROGERS J, LETELLIER T, FLORES R, ALFAMA F, POMMIER C, GUERCHE C. Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biology, 2018,19(1):111.
doi: 10.1186/s13059-018-1491-4 pmid: 30115101 |
[20] |
EDDY S R, PEARSON, WILLIAM R. Accelerated profile HMM searches. PLoS Computational Biology, 2011,7(10):e1002195.
doi: 10.1371/journal.pcbi.1002195 pmid: 22039361 |
[21] | FINN R D, CLEMENTS J, EDDY S R, FINN R D, CLEMENTS J, EDDY S R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Research, 2011,39(Web Server issue):29-37. |
[22] |
ALTSCHUL S F. Gapped BLAST and PSI-BLAST: A new generation of protein detabase search programs. Nucleic Acids Research, 1997,25:3389-3402.
doi: 10.1093/nar/25.17.3389 pmid: 9254694 |
[23] |
KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology & Evolution, 2016,33(7):1870.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[24] |
FINN R D, COGGILL P, EBERHARDT R Y, EDDY S R, MISTRY J, MITCHELL A L, SALAZAR G A. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Research, 2015,44(D1):D279-D285.
doi: 10.1093/nar/gkv1344 pmid: 26673716 |
[25] |
MARCHLER-BAUER A, BO Y, HAN L, HE J, LANCZYCKI C J, LU S, GWADZ M. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 2017,45(D1):D200-D203.
doi: 10.1093/nar/gkw1129 pmid: 27899674 |
[26] |
GASTEIGER E. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 2003,31(13):3784-3788.
doi: 10.1093/nar/gkg563 pmid: 12824418 |
[27] |
BROWN P, BAXTER L, HICKMAN R, BEYNON J, MOORE J D, OTT S. MEME-LaB: Motif analysis in clusters. Bioinformatics, 2013,29(13):1696-1697.
doi: 10.1093/bioinformatics/btt248 |
[28] |
HU B, JIN J, GUO A Y, ZHANG H, LUO J, GAO G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics, 2014,31(8):1296.
doi: 10.1093/bioinformatics/btu817 pmid: 25504850 |
[29] |
LESCOT M. Plant CARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002,30(1):325-327.
doi: 10.1093/nar/30.1.325 pmid: 11752327 |
[30] | CHEN C, XIA R, CHEN H, HE Y. TBtools, a Toolkit for Biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv, 2018: 289660. |
[31] |
RAMÍREZ-GONZÁLEZ R H, BORRILL P, LANG D, HARRINGTON S A, BRINTON J, VENTURINI L, KHEDIKAR Y. The transcriptional landscape of polyploid wheat. Science, 2018, 361(6403): eaar6089.
doi: 10.1126/science.aar6089 pmid: 30115782 |
[32] |
BORRILL P, RAMIREZ-GONZALEZ R, UAUY C. expVIP: A customisable RNA-seq data analysis and visualisation platform. Plant Physiology, 2016,170(4):2172-2186.
doi: 10.1104/pp.15.01667 pmid: 26869702 |
[33] |
ZHANG Y, HU X, ISLAM S, SHE M, PENG Y, YU Z, ZHANG J. New insights into the evolution of wheat avenin-like proteins in wild emmer wheat (Triticum dicoccoides). Proceedings of the National Academy of Sciences of the United States of America, 2018,115(52):13312-13317.
doi: 10.1073/pnas.1812855115 pmid: 30530679 |
[34] |
CHEN F, BEECHER B S, MORRIS C F. Physical mapping and a new variant of puroindoline b-2 genes in wheat. Theoretical & Applied Genetics, 2010,120(4):745-751.
doi: 10.1007/s00122-009-1195-y pmid: 19911160 |
[35] |
CHANTRET N, SALSE J, SABOT F, RAHMAN S, BELLEC A, LAUBIN B, GAUTIER M F. Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). The Plant Cell, 2005,17(4):1033-1045.
doi: 10.1105/tpc.104.029181 pmid: 15749759 |
[36] |
GASPARIS S, ORCZYK W, NADOLSKA-ORCZYK A. Sina, and Sinb, genes in triticale do not determine grain hardness contrary to their orthologs Pina, and Pinb, in wheat. BMC Plant Biology, 2013,13(1):190.
doi: 10.1186/1471-2229-13-190 |
[37] |
GAZZA L, TADDEI F, CONTI S, GAZZELLONI G, MUCCILLI V, JANNI M, OVIDIO R D, ALFIERI M, REDAELLI R, POGNA N E. Biochemical and molecular characterization of Avena indolines and their role in kernel texture. Molecular Genetics and Genomics, 2015,290(1):39-54.
doi: 10.1007/s00438-014-0894-5 pmid: 25120168 |
[38] | KIM K H, FEIZ L, DYER A T, GREY W, HOGG A C, MARTIN J M, GIROUX M J. Puroindoline: Antimicrobial wheat endosperm specific protein. Journal of Phytopathology, 2011,7:903-906. |
[39] |
KIM K H, FEIZ L, DYER A T, GREY W, HOGG A C, MARTIN J M, GIROUX M J. Increased resistance to penicillium seed rot in transgenic wheat over‐expressing Puroindolines. Journal of Phytopathology, 2012,160(5):243-247.
doi: 10.1111/j.1439-0434.2012.01881.x |
[40] | HANEY E F, PETERSEN A P, LAU C K, JING W, STOREY D G, VOGEL H J. Mechanism of action of puroindoline derived tryptophan-rich antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013,1828(8):1802-1813. |
[41] |
AYALA M, GUZMÁN C, PEÑA R J, ALVAREZ J B. Genetic diversity and molecular characterization of puroindoline genes (Pina-D1 and Pinb-D1) in bread wheat landraces from Andalusia (Southern Spain). Journal of Cereal Science, 2016,71:61-65.
doi: 10.1016/j.jcs.2016.07.017 |
[42] |
NIRMAL R C, FURTADO A, WRIGLEY C, HENRY R J. Influence of gene expression on hardness in wheat. PLoS ONE, 2015,11(10):e0164746.
doi: 10.1371/journal.pone.0164746 pmid: 27741295 |
[43] |
CHEN M, WILKINSON M, TOSI P, HE G, SHEWRY P. Novel puroindoline and grain softness protein alleles in Aegilops species with the C, D, S, M and U genomes. Theoretical and Applied Genetics, 2005,111(6):1159-1166.
doi: 10.1007/s00122-005-0047-7 |
[44] |
DARLINGTON H F, ROUSTER J, HOFFMANN L, HALFORD N G, SHEWRY P R, SIMPSON D J. Identification and molecular characterisation of hordoindolines from barley grain. Plant Molecular Biology, 2001,47(6):785-794.
doi: 10.1023/A:1013691530675 |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[5] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[6] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[7] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[8] | 刘硕,张慧,高志源,许吉利,田汇. 437个小麦品种钾收获指数的变异特征[J]. 中国农业科学, 2022, 55(7): 1284-1300. |
[9] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[10] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[11] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[12] | 蔡苇荻,张羽,刘海燕,郑恒彪,程涛,田永超,朱艳,曹卫星,姚霞. 基于成像高光谱的小麦冠层白粉病早期监测方法[J]. 中国农业科学, 2022, 55(6): 1110-1126. |
[13] | 李世佳,吕紫敬,赵锦. 枣R2R3-MYB亚家族基因鉴定及其在果实发育中的表达分析[J]. 中国农业科学, 2022, 55(6): 1199-1212. |
[14] | 宗成, 吴金鑫, 朱九刚, 董志浩, 李君风, 邵涛, 刘秦华. 添加剂对农副产物和小麦秸秆混合青贮发酵品质的影响[J]. 中国农业科学, 2022, 55(5): 1037-1046. |
[15] | 马鸿翔, 王永刚, 高玉姣, 何漪, 姜朋, 吴磊, 张旭. 小麦抗赤霉病育种回顾与展望[J]. 中国农业科学, 2022, 55(5): 837-855. |
|