中国农业科学 ›› 2019, Vol. 52 ›› Issue (23): 4374-4385.doi: 10.3864/j.issn.0578-1752.2019.23.017
收稿日期:
2019-03-21
接受日期:
2019-07-01
出版日期:
2019-12-01
发布日期:
2019-12-01
通讯作者:
胡大刚,郝玉金
作者简介:
王佳慧,E-mail:wangjhedu@126.com
基金资助:
WANG JiaHui,GU KaiDi,WANG ChuKun,YOU ChunXiang,HU DaGang(),HAO YuJin(
)
Received:
2019-03-21
Accepted:
2019-07-01
Online:
2019-12-01
Published:
2019-12-01
Contact:
DaGang HU,YuJin HAO
摘要:
【目的】乙烯响应因子(ethylene response factor,ERF)是植物特有的一类转录因子,参与植物根系形成、下胚轴伸长、果实成熟、器官衰老等生长发育过程,在调节植物生物和非生物胁迫反应及果实品质过程中发挥着至关重要的作用。克隆苹果乙烯响应因子MdERF72,通过表达分析和转基因功能分析,研究其在抵御非生物胁迫过程中的功能,为探索MdERF72在植物生长发育过程中的功能提供理论依据。【方法】以‘王林’苹果(Malus×domestica Borkh.)愈伤组织为试材,利用RT-PCR技术克隆MdERF72,利用生物信息学方法分析其编码氨基酸序列组成、蛋白质理化性质、亲缘关系、空间结构等,并利用MEGA5.0构建系统进化树,与拟南芥ERF-B2亚家族进行蛋白序列同源性分析;利用实时荧光定量PCR技术探明其在苹果组织中的表达和果实发育时期的时空表达特征;同时利用实时荧光定量PCR技术检测‘嘎拉’苹果组培苗中MdERF72对ACC、NaCl以及低温的响应;构建基因的过表达载体,通过农杆菌介导的遗传转化获得稳定遗传的过表达苹果愈伤组织;检测NaCl以及低温处理后,野生型和转基因苹果愈伤组织的鲜重、丙二醛含量、电导率、过氧化氢含量以及超氧阴离子含量的差异。【结果】MdERF72位于苹果第13号染色体上,该基因存在1个ERF家族特有的AP2/ERF结构域。进化树分析结果显示,MdERF72与拟南芥AtERF72序列同源性较高,都属于ERFs家族的B2亚家族。氨基酸理化性质分析表明,MdERF72编码253个氨基酸,预测其蛋白质分子量为27.61 kD,等电点(pI)为5.10。另外,亲疏水预测结果显示MdERF72疏水部分大于亲水部分,表明其属于疏水性蛋白。磷酸化位点分析显示,MdERF72只有苏氨酸磷酸化位点,表明该蛋白可能受到磷酸化作用的调控。MdERF72启动子序列中含有与茉莉酸(JA)、生长素及干旱信号相关的顺式作用元件。MdERF72是乙烯正调控转录因子,在苹果的各组织中均有表达,在果实和茎中表达量相对较高;并且在果实中随着果实的成熟,表达量逐渐升高。苹果组培苗中MdERF72的表达明显受到高盐和低温的诱导。过量表达MdERF72的苹果愈伤组织在高盐和低温胁迫处理下,生长势明显比野生型对照强,电导率,丙二醛、过氧化氢、超氧阴离子的含量都低于野生型,表明MdERF72提高了对盐和低温胁迫的抗性。【结论】MdERF72在响应高盐、低温胁迫过程中发挥着重要的正调控作用,过表达MdERF72可以提高苹果愈伤组织对高盐和低温胁迫的抗性。
王佳慧,顾凯迪,王楚堃,由春香,胡大刚,郝玉金. 苹果乙烯响应因子MdERF72对非生物胁迫的响应[J]. 中国农业科学, 2019, 52(23): 4374-4385.
WANG JiaHui,GU KaiDi,WANG ChuKun,YOU ChunXiang,HU DaGang,HAO YuJin. Analysis of Apple Ethylene Response Factor MdERF72 to Abiotic Stresses[J]. Scientia Agricultura Sinica, 2019, 52(23): 4374-4385.
表1
MdERF72基因启动子重要顺式作用元件分析"
调控序列 Regulatory sequence | 序列 Sequence | 位点功能 Function of site | 位置 Location |
---|---|---|---|
Sp1 | GGGCGG | 光响应元件Light responsive element | +51 |
TGA-box | TGACGTAA | 生长素响应元件Part of an auxin-responsive element | -960 |
LTR | CCGAAA | 低温响应元件cis-acting element involved in low-temperature responsiveness | -600 |
ARE | AAACCA | 厌氧响应元件cis-acting regulatory element essential for the anaerobic induction | +1238 |
MBS | CAACTG | 干旱胁迫响应元件MYB binding site involved in drought-inducibility | +1192 |
TGACG-motif | TGACG | 茉莉酸响应元件cis-acting regulatory element involved in the MeJA-responsiveness | +768, -841 |
CAT-box | GCCACT | 分生组织表达响应元件cis-acting regulatory element related to meristem expression | -1986 |
[1] | 杨志佳 . 盐碱胁迫下拟南芥14-3-3蛋白对蛋白激酶SOS2和PKS5调控的研究[D]. 北京: 中国农业大学, 2019. |
YANG Z J . Regulation of protein kinases SOS2 and PKS5 by 14-3-3 protein under salt and alkali stress in Arabidopsis. Beijing: China Agricultural University, 2019. (in Chinese) | |
[2] |
LICAUSI F, OHME-AKAGI M, PERATA P . APETALA 2/Ethylene Responsive Factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs. New Phytologist, 2013,199(3):639-649.
doi: 10.1111/nph.12291 pmid: 24010138 |
[3] |
RIECHMANN J L, HEARD J, MARTIN G, REUBER L, JIANG C Z, KEDDIE J, ADAM L, PINEDA O, RATCLIFFE O J, SAMAHA R R, CREELMAN R, PILGRIM M, BROUN P, ZHANG J Z, GHANDEHARI D, SHERMAN B K, YU G L . Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000,290(5499):2105-2110.
doi: 10.1126/science.290.5499.2105 pmid: 11118137 |
[4] |
NAKANO T, SUZUKI K, FUJIMURA T, SHINSHI H . Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 2006,140(2):411-432.
doi: 10.1104/pp.105.073783 pmid: 16407444 |
[5] |
OHME-TAKAGI M, SHINSHI H . Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. The Plant Cell, 1995,7(2):173-182.
doi: 10.1105/tpc.7.2.173 pmid: 7756828 |
[6] |
MOOSE S P, SISCO P H . Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes & Development, 1996,10(23):3018-3027.
doi: 10.1055/s-0039-3400233 pmid: 31842235 |
[7] |
GU Y Q, WILDERMUTH M C, CHAKRAVARTHY S, LOH Y T, YANG C, HE X H, MARTIN G B . Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. The Plant Cell, 2002,14(4):817-831.
doi: 10.1105/tpc.000794 pmid: 11971137 |
[8] |
MITO T, SEKI M, SHINOZAKI K, TAKAGI M O, MATSUI K . Generation of chimeric repressors that confer salt tolerance in Arabidopsis and rice. Plant Biotechnology Journal, 2011,9(7):736-746.
doi: 10.1111/j.1467-7652.2010.00578.x |
[9] |
JAGLO K R, KLEFF S, AMUNDSEN K L, ZHANG X, HAAKE V, ZHANG J Z, DEITS T, THOMASHOW M F . Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiology, 2001,127(3):910-917.
pmid: 11706173 |
[10] |
NOVILLO F, MEDINA J, SALINAS J . Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences of the USA, 2007,104(52):21002-21007.
doi: 10.1073/pnas.0705639105 pmid: 18093929 |
[11] |
HSIEH T H, LEE J T, YANG P T, CHIU L H, CHARNG Y Y, WANG Y C, CHAN M . Heterology expression of the Arabidopsis C-repeat/ dehydration response element binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiology, 2002,129(3):1086-1094.
doi: 10.1104/pp.003442 pmid: 12114563 |
[12] |
KASUGA M, MIURA S, SHINOZAKI K, SHINOZAKI K Y . A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant and Cell Physiology, 2004,45(3):346-350.
doi: 10.1093/pcp/pch037 pmid: 15047884 |
[13] |
ITO Y, KATSURA K, MARUYAMA K, TAJI T, KOBAYASHI M, SEKI M, SHINOZAKI K, SHINOZAKI K Y . Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant and Cell Physiology, 2006,47(1):141-153.
doi: 10.1093/pcp/pci230 pmid: 16284406 |
[14] |
PINO M T, SKINNER J S, JEKNIĆ Z, HAYES P M, SOELDNER A H, THOMASHOW M F, CHEN T H H . Ectopic AtCBF1 over- expression enhances freezing tolerance and induces cold acclimation- associated physiological modifications in potato. Plant, Cell & Environment, 2008,31(4):393-406.
doi: 10.1111/j.1365-3040.2008.01776.x pmid: 18182016 |
[15] |
LIU Q, KASUGA M, SAKUMA Y, ABE H, MIURA S, YAMAGUCHI- HINOZAKI K, SHINOZAKI K . Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature- responsive gene expression, respectively, in Arabidopsis. The Plant Cell, 1998, 10(8):1391-1406.
doi: 10.1105/tpc.10.8.1391 pmid: 9707537 |
[16] |
CHEN J R, LÜ J J, LIU R, LIU R, XIONG X Y, WANG T X, CHEN S Y, GUO L B, WANG H F . DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.). Plant Growth Regulation, 2010,60(3):199-211.
doi: 10.1007/s10725-009-9434-4 |
[17] |
ZHANG Z, HUANG R . Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Molecular Biology, 2010,73(3):241-249.
doi: 10.1007/s11103-010-9609-4 |
[18] |
TRUJILLO L E, SOTOLONGO M, MENENDEZ C, OCHOGAVÍA M E, COLL Y, HERNÁNDEZ I, HIDALGO O B, THOMMA B P H J, VERA P, HERNÁNDEZ L . SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant and Cell Physiology, 2008,49(4):512-525.
doi: 10.1093/pcp/pcn025 pmid: 18281696 |
[19] |
SERRA T S, FIGUEIREDO D D, CORDEIRO A M, ALMEIDA D M, LOURENÇO T, ABREU I A, SEBASTIÁN A, FERNANDES L, MOREIRA B C, OLIVEIRA M M, SAIBO N J M . OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Molecular Biology, 2013,82(4/5):439-455.
doi: 10.1007/s11103-013-0073-9 pmid: 23703395 |
[20] |
JUNG J, WON S Y, SUH S C, KIM H, WING R, JEONG Y, HWANG I, KIM M . The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta, 2007,225(3):575-588.
doi: 10.1007/s00425-006-0373-2 |
[21] |
KIM Y H, JEONG J C, PARK S, LEE H S, KWAK S S . Molecular characterization of two ethylene response factor genes in sweetpotato that respond to stress and activate the expression of defense genes in tobacco leaves. Journal of Plant Physiology, 2012,169(11):1112-1120.
doi: 10.1016/j.jplph.2012.03.002 |
[22] | 刘文奇, 陈旭君, 徐晓晖, 凌建群, 郭泽建 . ERF类转录因子OPBP1基因的超表达提高烟草的耐盐能力. 植物生理与分子生物学学报, 2002,28(6):473-478. |
LIU W Q, CHEN X J, XU X H, LING J Q, GUO Z J . Overexpression of ERF transcription factor OPBP1 gene enhances salt tolerance of tobacco. Journal of Plant Physiology and Molecular Biology. 2002,28(6):473-478. (in Chinese) | |
[23] |
SHIN R, PARK J M, AN J M, PAEK K H . Ectopic expression of Tsi1 in transgenic hot pepper plants enhances host resistance to viral, bacterial, and oomycete pathogens. Molecular Plant-Microbe Interactions, 2002,15(10):983-989.
doi: 10.1094/MPMI.2002.15.10.983 pmid: 12437295 |
[24] | 刘伟 . 乙烯响应因子ERF4/ERF72参与苹果砧木缺铁应答的功能研究[D]. 北京: 中国农业大学, 2017. |
LIU W . Functional research of ethylene response factor ERF4/ERF72 involved in iron deficiency response of apple rootstocks. Beijing: China Agricultural University, 2017. (in Chinese) | |
[25] | 韩朋良, 刘肖娟, 刘鑫, 董元花, 胡大刚, 郝玉金 . 苹果生长素阻遏蛋白基因MdIAA26的分子克隆与功能鉴定. 园艺学报, 2018,45(6):1041-1053. |
HAN P L, LIU X J, LIU X, DONG Y H, HU D G, HAO Y J . Molecular cloning and functional identification of apple auxin repressor protein gene MdIAA26. Acta Horticulturae Sinica, 2018,45(6):1041-1053. (in Chinese) | |
[26] | 张全艳, 于建强, 王佳慧, 胡大刚, 郝玉金 . 苹果MdNAC143的克隆及其在苹果愈伤组织的抗盐功能鉴定. 园艺学报, 2017,44(11):2163-2170. |
ZHANG Q Y, YU J Q, WANG J H, HU D G, HAO Y J . Molecular cloning and functional characterization of MdNAC143 reveals its involvement in salt tolerance in apple callus. Acta Horticulturae Sinica, 2017,44(11):2163-2170. (in Chinese) | |
[27] |
HU D G, SUN C H, MA Q J, YOU C X, CHENG L, HAO Y J . MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiology, 2016,170(3):1315-1330.
doi: 10.1104/pp.15.01333 pmid: 26637549 |
[28] | 赵世杰, 许长成, 邹琦, 孟庆伟 . 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1994,30(3):207-210. |
ZHAO S J, XU C C, ZOU Q, MENG Q W . Improvements of method for measurement of malondialdehyde in plant tissues. Plant Physiology Communications, 1994,30(3):207-210. (in Chinese) | |
[29] | 崔之益, 李蕊萍, 胡加新, 奚如春 . 电导法在植物研究中应用. 安徽农业科学, 2014,42(17):5358-5359, 5366. |
CUI Z Y, LI R P, HU J X, XI R C . Application of conductivity method in botanical research. Journal of Anhui Agricultural Sciences, 2014,42(17):5358-5359, 5366. (in Chinese) | |
[30] |
OH S J, SONG S I, KIM Y S, JANG H J, KIM S Y, KIM M, KIM Y K, NAHM B H, KIM J K . Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiology, 2005,138(1):341-351.
doi: 10.1104/pp.104.059147 pmid: 15834008 |
[31] |
HONG B, TONG Z, MA N, KASUGA M, SHINOZAKI Y, GAO J P . Expression of the Arabidopsis DREB1A gene in transgenic chrysanthemum enhances tolerance to low temperature. The Journal of Horticultural Science and Biotechnology, 2006,81(6):1002-1008.
doi: 10.1016/j.plaphy.2014.03.030 pmid: 24751398 |
[32] |
HONG B, TONG Z, MA N, LI J, KASUGA M, YAMAGUCHI S K, GAO J P . Heterologous expression of the AtDREB1A gene in chrysanthemum increases drought and salt stress tolerance. Science in China Series C: Life Sciences, 2006,49(5):436-445.
doi: 10.1007/s11427-006-2014-1 pmid: 17172050 |
[33] |
FISCHER U, DRÖGE-LASER W . Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Molecular Plant- Microbe Interactions, 2004,17(10):1162-1171.
doi: 10.1094/MPMI.2004.17.10.1162 pmid: 15497409 |
[34] |
ZUO K J, QIN J, ZHAO J Y, LING H, ZHANG L D, CAO Y F, TANG K X . Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Gene, 2007,391(1/2):80-90.
doi: 10.1016/j.gene.2006.12.019 pmid: 17321073 |
[35] |
LI T, XU Y X, ZHANG L C, JI Y L, TAN D M, YUAN H, WANG A D . The jasmonate-activated transcription factor MdMYC2 regulates ETHYLENE RESPONSE FACTOR and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening. The Plant Cell, 2017,29(6):1316-1334.
doi: 10.1105/tpc.17.00349 pmid: 28550149 |
[36] |
MÜLLER M, MUNNÉ-BOSCH S . Ethylene response factors: A key regulatory hub in hormone and stress signaling. Plant Physiology, 2015,169(1):32-41.
doi: 10.1104/pp.15.00677 pmid: 26103991 |
[1] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[2] | 陈学森, 伊华林, 王楠, 张敏, 姜生辉, 徐娟, 毛志泉, 张宗营, 王志刚, 姜召涛, 徐月华, 李建明. 芽变选种推动世界苹果和柑橘产业优质高效发展案例解读[J]. 中国农业科学, 2022, 55(4): 755-768. |
[3] | 路翔, 高源, 王昆, 孙思邈, 李连文, 李海飞, 李青山, 冯建荣, 王大江. 苹果栽培品种不同族系香气特征分析[J]. 中国农业科学, 2022, 55(3): 543-557. |
[4] | 高小琴,聂继云,陈秋生,韩令喜,刘璐,程杨,刘明雨. 基于矿物元素指纹技术的‘富士’苹果产地溯源[J]. 中国农业科学, 2022, 55(21): 4252-4264. |
[5] | 储宝华,曹富国,卞宁宁,钱谦,李中兴,李雪薇,刘泽远,马锋旺,管清美. 84个苹果栽培品种对斑点落叶病的抗性评价和全基因组关联分析[J]. 中国农业科学, 2022, 55(18): 3613-3628. |
[6] | 解斌,安秀红,陈艳辉,程存刚,康国栋,周江涛,赵德英,李壮,张艳珍,杨安. 不同苹果砧木对持续低磷的响应及适应性评价[J]. 中国农业科学, 2022, 55(13): 2598-2612. |
[7] | 宋博文,杨龙,潘云飞,李海强,李浩,冯宏祖,陆宴辉. 农田景观格局对南疆苹果园梨小食心虫成虫种群动态的影响[J]. 中国农业科学, 2022, 55(1): 85-95. |
[8] | 沙仁和,兰黎明,王三红,罗昌国. 苹果转录因子MdWRKY40b抗白粉病的机理[J]. 中国农业科学, 2021, 54(24): 5220-5229. |
[9] | 曹钰晗,李紫腾,张静怡,张静娜,胡同乐,王树桐,王亚南,曹克强. 我国苹果斑点落叶病菌携带dsRNA分析及一种dsRNA病毒的鉴定[J]. 中国农业科学, 2021, 54(22): 4787-4799. |
[10] | 李紫腾,曹钰晗,李楠,孟祥龙,胡同乐,王树桐,王亚南,曹克强. 苹果锈果类病毒在7个品种苹果上的分子变异及系统发育关系[J]. 中国农业科学, 2021, 54(20): 4326-4336. |
[11] | 宋春晖,陈晓菲,王枚阁,郑先波,宋尚伟,焦健,王苗苗,马锋旺,白团辉. 基于SLAF-seq技术鉴定苹果砧木耐涝候选基因[J]. 中国农业科学, 2021, 54(18): 3932-3944. |
[12] | 孙擎,赵艳霞,程晋昕,曾厅余,张祎. 基于多种算法的果树果实生长模型研究—以云南昭通苹果为例[J]. 中国农业科学, 2021, 54(17): 3737-3751. |
[13] | 王程利,尹志远,聂嘉俊,林永辉,黄丽丽. 苹果黑腐皮壳菌CAP超家族蛋白基因鉴定及毒性功能分析[J]. 中国农业科学, 2021, 54(16): 3440-3450. |
[14] | 刘锴,何闪闪,张彩霞,张利义,卞书迅,袁高鹏,李武兴,康立群,丛佩华,韩晓蕾. 苹果叶片不定芽再生过程的差异表达基因鉴定与分析[J]. 中国农业科学, 2021, 54(16): 3488-3501. |
[15] | 周喆,卞书迅,张恒涛,张瑞萍,高启明,刘珍珍,阎振立. 苹果果实大小相关的ARF-Aux/IAA互作组合筛选[J]. 中国农业科学, 2021, 54(14): 3088-3096. |
|