中国农业科学 ›› 2019, Vol. 52 ›› Issue (23): 4333-4349.doi: 10.3864/j.issn.0578-1752.2019.23.014
王寻,陈西霞,李宏亮,张富军,赵先炎,韩月彭,王小非(),郝玉金(
)
收稿日期:
2019-04-28
接受日期:
2019-06-26
出版日期:
2019-12-01
发布日期:
2019-12-01
通讯作者:
王小非,郝玉金
作者简介:
王寻,E-mail:wx20145015@126.com
基金资助:
WANG Xun,CHEN XiXia,LI HongLiang,ZHANG FuJun,ZHAO XianYan,HAN YuePeng,WANG XiaoFei(),HAO YuJin(
)
Received:
2019-04-28
Accepted:
2019-06-26
Online:
2019-12-01
Published:
2019-12-01
Contact:
XiaoFei WANG,YuJin HAO
摘要:
【目的】探究苹果NLP转录因子全基因组特征与表达模式,以便更深入地了解其结构特点与作用机制。【方法】基于本地BLAST数据库和Pfam数据库两大数据库,运用blastp和hmmsearch两种查询策略,对苹果全基因组范围内的NLP转录因子家族成员进行鉴定。经过严格筛选与确认后,对搜索结果进一步展开分析,主要分为3部分,包括NLP蛋白分析、NLP分析与苹果NLP表达分析,其中ProtParam、Clustal Omega、MEGA7、MEME 5.0.2、SOPMA、Phyre 2、WoLF PSORT、STRING等程序或软件用于蛋白质分析,基因分析使用MG2C、GSDS 2.0、PlantCARE、psRNATarget等在线工具,对于苹果NLP表达情况利用qRT-PCR进行定量检测。【结果】从苹果全部蛋白数据库中共筛选出6个NLP成员,系统进化分析可将它们分为I、II、III三类;蛋白二级结构以无规则卷曲为主,其次是α-螺旋,占比最小的是β-转角;亚细胞定位预测均定位于细胞核中,符合转录因子的特征;染色体定位显示5个基因(MDP0000584547除外)定位于4条染色体上;启动子分析发现大量与激素和逆境响应相关的顺式作用元件,暗示它们可能参与到激素和逆境信号的调控过程中,此外还识别到一个响应氮的GCN4作用元件,进一步说明该类转录因子与氮素有密不可分的关系;通过定量检测揭示苹果NLP家族在茎、叶等组织高表达的特征模式,并且表达分析结果也证实苹果NLP响应氮饥饿、干旱胁迫等。【结论】通过对苹果全基因组的分析,共识别6个NLP转录因子,对6个基因的结构与蛋白保守域分析,发现它们之间具有极高的相似性、保守性,同时又存在差异。类比拟南芥NLP蛋白的关联网络,推测与拟南芥NLP7同源性最高的MDP0000132856可能也具有复杂的功能。
王寻, 陈西霞, 李宏亮, 张富军, 赵先炎, 韩月彭, 王小非, 郝玉金. 苹果NLP(Nin-Like Protein)转录因子基因家族全基因组鉴定及表达模式分析[J]. 中国农业科学, 2019, 52(23): 4333-4349.
WANG Xun, CHEN XiXia, LI HongLiang, ZHANG FuJun, ZHAO XianYan, HAN YuePeng, WANG XiaoFei, HAO YuJin. Genome-Wide Identification and Expression Pattern Analysis of NLP (Nin-Like Protein) Transcription Factor Gene Family in Apple[J]. Scientia Agricultura Sinica, 2019, 52(23): 4333-4349.
表1
苹果NLP相对表达实时荧光定量PCR引物"
基因Gene | 上游引物Forward primer (5′-3′) | 下游引物Reverse primer (5′-3′) |
---|---|---|
MdNLP2 | CTATGCATCGAGGAAACAGCTTG | CAATTCCCTCACCTTCCTCAAGA |
MdNLP3 | GAAATGGAGAAAGAGGGCTCTGA | TTCAGAAGGGCTTGGATACTTCC |
MdNLP4 | GTCAGTATGCTCTCGATCCTGATA | CAGTAAGATGTGTAGGATGTTGGC |
MdNLP5 | GCTTGCTTCTGTGGAGACATTAC | TCCAGTATGAGTGCTCTGTAAGC |
MdActin | GGACAGCGAGGACATTCAGC | CTGACCCATTCCAACCATAACA |
表2
苹果NLP家族基因、蛋白特征及亚细胞定位预测"
基因 Gene | 登录号 Accession number | 基因长度 Gene length | 编码序列长度 CDS length | 氨基酸数目 Size of aa | 分子量 MW (D) | 等电点 pI | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|
MdNLP1 | MDP0000788505 | 3856 | 2460 | 819 | 90889.49 | 6.25 | 细胞核 Nucleus |
MdNLP2 | MDP0000265619 | 9510 | 5121 | 1706 | 189398.44 | 7.9 | 细胞核 Nucleus |
MdNLP3 | MDP0000246881 | 9366 | 4152 | 1383 | 153424.77 | 7.88 | 细胞核 Nucleus |
MdNLP4 | MDP0000239938 | 8796 | 3990 | 1329 | 147220.18 | 5.5 | 细胞核 Nucleus |
MdNLP5 | MDP0000132856 | 4454 | 2949 | 982 | 107556.64 | 5.45 | 细胞核 Nucleus |
MdNLP6 | MDP0000584547 | 10212 | 3159 | 1052 | 117304.32 | 5.96 | 细胞核 Nucleus |
表4
苹果NLP GO分类统计列表"
GO分类GO classification | GO条目GO term | 基因数目Gene number | 描述Description |
---|---|---|---|
分子功能 Molecular Function | GO:0005524 GO:0017111 GO:0016887 GO:0000166 GO:0008270 GO:0003676 | 1 1 1 3 2 2 | ATP结合 ATP binding 核苷三磷酸酶活性 Nucleoside-triphosphatase activity ATP酶活性 ATPase activity 核苷酸结合 Nucleotide binding 锌离子结合 Zinc ion binding 核酸结合 Nucleic acid binding |
生物途径 Biological Process | GO:0006810 | 1 | 转运 Transport |
细胞组分 Cellular Component | GO:0016020 GO:0016021 | 1 1 | 膜 Membrane 膜的整体成分 Integral component of membrane |
表5
苹果NLP启动子的顺式作用元件预测"
基因 Gene | 脱落酸 ABRE | 低氧 ARE | 茉莉酸甲酯 CGTCA | 乙烯 ERE | 赤霉素 GARE | 氮素 GCN4 | 干旱 MBS | 防御和胁迫 TC-rich repeats | 水杨酸 TCA | 生长素 TGA | 病原菌 W-box |
---|---|---|---|---|---|---|---|---|---|---|---|
MdNLP1 | 0/1 | 2/0 | 1/1 | 1/1 | 0/1 | 1/0 | 1/0 | 0/1 | |||
MdNLP2 | 2/3 | 1/0 | 3/0 | 0/1 | 0/1 | 0/1 | |||||
MdNLP3 | 0/2 | 0/3 | 0/1 | 0/1 | 0/1 | 0/1 | 1/0 | 0/1 | |||
MdNLP4 | 0/2 | 0/3 | 1/0 | 1/1 | 1/1 | 1/1 | 0/1 | ||||
MdNLP5 | 1/1 | 2/0 | 1/2 | 0/1 | 0/1 | 1/0 | 0/1 | 0/1 | |||
MdNLP6 | 4/3 | 1/0 | 3/3 | 1/0 | 0/1 |
表6
推测与苹果NLP相关的响应氮素的miRNA"
靶基因 Target gene | miRNA | 抑制类型 Inhibition | 靶基因 Target gene | miRNA | 抑制类型 Inhibition | 靶基因 Target gene | miRNA | 抑制类型 Inhibition | ||
---|---|---|---|---|---|---|---|---|---|---|
MdNLP2 | mdm-miR171a | 直接降解Cleavage | MdNLP5 | mdm-miR169e | 直接降解Cleavage | MdNLP5 | mdm-miR395e | 直接降解Cleavage | ||
mdm-miR171b | 直接降解Cleavage | mdm-miR169f | 直接降解Cleavage | mdm-miR395f | 直接降解Cleavage | |||||
mdm-miR395a | 直接降解Cleavage | mdm-miR171c | 抑制翻译Translation | mdm-miR395g | 直接降解Cleavage | |||||
mdm-miR395b | 直接降解Cleavage | mdm-miR171d | 抑制翻译Translation | mdm-miR395h | 直接降解Cleavage | |||||
mdm-miR395c | 直接降解Cleavage | mdm-miR171e | 抑制翻译Translation | mdm-miR395i | 直接降解Cleavage | |||||
mdm-miR395d | 直接降解Cleavage | mdm-miR171g | 抑制翻译Translation | |||||||
mdm-miR395e | 直接降解Cleavage | mdm-miR171h | 抑制翻译Translation | |||||||
mdm-miR395f | 直接降解Cleavage | mdm-miR395a | 直接降解Cleavage | |||||||
mdm-miR395g | 直接降解Cleavage | mdm-miR395b | 直接降解Cleavage | |||||||
mdm-miR395h | 直接降解Cleavage | mdm-miR395c | 直接降解Cleavage | |||||||
mdm-miR395i | 直接降解Cleavage | mdm-miR395d | 直接降解Cleavage |
[1] |
KONISHI M, YANAGISAWA S . Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nature Communications, 2013,4:1617.
doi: 10.1038/ncomms2621 pmid: 23511481 |
[2] |
SCHAUSER L, ROUSSIS A, STILLER J, STOUGAARD J . A plant regulator controlling development of symbiotic root nodules. Nature, 1999,402(6758):191-195.
doi: 10.1038/46058 pmid: 10647012 |
[3] |
SCHAUSER L, WIELOCH W, STOUGAARD J . Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. Journal of Molecular Evolution, 2005,60(2):229-237.
doi: 10.1007/s00239-004-0144-2 |
[4] |
KUMAR A, BATRA R, GAHLAUT V, GAUTAM T, KUMAR S, SHARMA M, TYAGI S, SINGH K P, BALYAN H S, PANDEY R, GUPTA P K . Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat ( Triticum aestivum L.). PLoS ONE, 2018,13(12):e0208409.
doi: 10.1371/journal.pone.0208409 pmid: 30540790 |
[5] |
GE M, LIU Y H, JIANG L, WANG Y C, LV Y D, ZHOU L, LIANG S Q, BAO H B, ZHAO H . Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response. Plant Growth Regulation, 2018,84(1):95-105.
doi: 10.1007/s10725-017-0324-x |
[6] | 吴翔宇, 许志茹, 曲春浦, 李蔚, 孙琦, 刘关君 . 毛果杨NLP基因家族生物信息学分析与鉴定. 植物研究, 2014,34(1):37-43. |
WU X Y, XU Z R, QU C P, LI W, SUN Q, LIU G J . Genome-wide identification and characterization of NLP gene family in Populus trichocarpa. Bulletin of Botanical Research, 2014,34(1):37-43. (in Chinese) | |
[7] |
曹雄军, 卢晓鹏, 熊江, 李静, 吴倩, 周芳芳, 谢深喜 . 枳NLP转录因子克隆及其在不同水分条件下的表达. 中国农业科学, 2016,49(2):381-390.
doi: 10.3864/j.issn.0578-1752.2016.02.018 |
CAO X J, LU X P, XIONG J, LI J, WU Q, ZHOU F F, XIE X S . Cloning and expression of Poncirus Trifoliata (L.) Raf. NIN-Like transcription factors under different water conditions. Scientia Agricultura Sinica, 2016,49(2):381-390. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.02.018 |
|
[8] |
LIU M, CHANG W, FAN Y H, SUN W, QU C M, ZHANG K, LIU L Z, XU X F, TANG Z L, LI J N, LU K . Genome-wide identification and characterization of NODULE-INCEPTION-LIKE Protein (NLP) family genes in Brassica napus. International Journal of Molecular Sciences, 2018,19(8):2270.
doi: 10.1016/j.gene.2019.144275 pmid: 31809843 |
[9] |
MARCHIVE C, ROUDIER F, CASTAINGS L, BRÉHAUT V, BLONDET E, COLOT V, MEYER C, KRAPP A, . Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nature Communications, 2013,4:1713.
doi: 10.1038/ncomms2650 pmid: 23591880 |
[10] |
YAN D W, EASWARAN V, CHAU V, OKAMOTO M, IERULLO M, KIMURA M, ENDO A, YANO R, PASHA A, GONG Y C, BI Y M, PROVART N, GUTTMAN D, KRAPP A, ROTHSTEIN S J, NAMBARA E . NIN-like protein 8 is a master regulator of nitrate- promoted seed germination in Arabidopsis. Nature Communications, 2016,7:13179.
doi: 10.1038/ncomms13179 pmid: 27731416 |
[11] |
LIU K H, NIU Y J, KONISHI M, WU Y, DU H, CHUNG H S, LI L, BOUDSOCQ M, MCCORMACK M, MAEKAWA S, ISHIDA T, ZHANG C, SHOKAT K, YANAGISAWA S, SHEEN J . Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks. Nature, 2017,545(7654):311.
doi: 10.1038/nature22077 pmid: 28489820 |
[12] |
YU L H, WU J, TANG H, YUAN Y, WANG S M, WANG Y P, ZHU Q S, LI S G, XIANG C B . Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation. Scientific Reports, 2016,6:27795.
doi: 10.1038/srep27795 pmid: 27293103 |
[13] |
VELASCO R, ZHARKIKH A, AFFOURTIT J, DHINGRA A, CESTARO A, KALYANARAMAN A, FONTANA P, BHATNAGAR S K, TROGGIO M, PRUSS D, SALVI S, PINDO M, BALDI P, CASTELLETTI S, CAVAIUOLO M, COPPOLA G, COSTA F, COVA V, RI A D, GOREMYKIN V , et al. The genome of the domesticated apple (Malus×domestica Borkh.). Nature Genetics, 2010,42(10):833-839.
doi: 10.1038/ng.654 pmid: 20802477 |
[14] |
JUNG S, LEE T, CHENG C H, BUBLE K, ZHENG P, YU J, HUMANN J, FICKLIN S P, GASIC K, SCOTT K, FRANK M, RU S, HOUGH H, EVANS K, PEACE C, OLMSTEAD M, DEVETTER L W, MCFERSON J, COE M, WEGRZYN J L, STATON M E, ABBOTT A G, MAIN D . 15 years of GDR: New data and functionality in the Genome Database for Rosaceae. Nucleic Acids Research, 2018,47(D1):D1137-D1145.
doi: 10.1093/nar/gky1000 pmid: 30357347 |
[15] |
FINN R D, BATEMAN A, CLEMENTS J, COGGILL P, EBERHARDT R Y, EDDY S R, HEGER A, HETHERINGTON K, HOLM L, MISTRY J, SONNHAMMER E L L, TATE J, PUNTA M . Pfam: The protein families database. Nucleic Acids Research, 2013,42(D1):D222-D230.
doi: 10.1093/nar/gkt1223 pmid: 24288371 |
[16] |
KUMAR S, STECHER G, TAMURA K . MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016,33(7):1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[17] |
BAILEY T L, WILLIAMS N, MISLEH C, LI W W . MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research, 2006,34(suppl_2):W369-W373.
doi: 10.1093/nar/gkl198 pmid: 16845028 |
[18] |
KELLEY L A, MEZULIS S, YATES C M, WASS M N, STERNBERG M J E . The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 2015,10(6):845-858.
doi: 10.1038/nprot.2015.053 pmid: 25950237 |
[19] |
HORTON P, PARK K J, OBAYASHI T, FUJITA N, HARADA H, ADAMS-COLLIER C J, NAKAI K . WoLF PSORT: Protein localization predictor. Nucleic Acids Research, 2007,35(suppl_2):W585-W587.
doi: 10.1104/pp.110.156851 pmid: 20647376 |
[20] |
SZKLARCZYK D, GABLE A L, LYON D, JUNGE A, WYDER S, HUERTA-CEPAS J, SIMONOVIC M, DONCHEVA N T, MORRIS J H, BORK P, JENSEN L J, VON MERING C . STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 2018,47(D1):D607-D613.
doi: 10.1093/nar/gky1131 pmid: 30476243 |
[21] |
HU B, JIN J P, GUO A Y, ZHANG H, LUO J C, GAO G . GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics, 2014,31(8):1296-1297.
doi: 10.1093/bioinformatics/btu817 pmid: 25504850 |
[22] |
LESCOT M DÉHAIS P, THIJS G, MARCHAL K, MOREAU Y, VAN DE PEER Y, ROUZÉ P, ROMBAUTS S . PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002,30(1):325-327.
doi: 10.1093/nar/30.1.325 pmid: 11752327 |
[23] |
DAI X B, ZHUANG Z H, ZHAO P X C . psRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Research, 2018,46(W1):W49-W54.
doi: 10.1093/nar/gky316 pmid: 29718424 |
[24] |
LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[25] |
CHARDIN C, GIRIN T, ROUDIER F, MEYER C, KRAPP A . The plant RWP-RK transcription factors: Key regulators of nitrogen responses and of gametophyte development. Journal of Experimental Botany, 2014,65(19):5577-5587.
doi: 10.1093/jxb/eru261 |
[26] |
MÜLLER M, KNUDSEN S . The nitrogen response of a barley C-hordein promoter is controlled by positive and negative regulation of the GCN4 and endosperm box. The Plant Journal, 1993,4(2):343-355.
doi: 10.1046/j.1365-313x.1993.04020343.x pmid: 8220485 |
[27] | 赵勐 . 玉米氮素营养相关小分子非编码RNA的克隆及miRNA169的功能鉴定[D]. 北京: 中国农业大学, 2014. |
ZHAO M . Cloning of small RNAs related to nitrogen nutrition in maize and functional analysis of miRNA169[D]. Beijing: China Agricultural University, 2014. (in Chinese) | |
[28] |
许振华 . 玉米低硝酸盐响应microRNA及靶基因鉴定与验证[D]. 北京: 中国农业科学院, 2011.
doi: 10.1093/aob/mct133 pmid: 23788746 |
XU Z H . Identification and verification of microRNAs and their targets on response low nitrate in maize[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
doi: 10.1093/aob/mct133 pmid: 23788746 |
|
[29] |
严莉, 王翠平, 陈建伟, 乔改霞, 李健 . 基于转录组信息的黑果枸杞MYB转录因子家族分析. 中国农业科学, 2017,50(20):3991-4002.
doi: 10.3864/j.issn.0578-1752.2017.20.013 |
YAN L, WANG C P, CHEN J W, QIAO G X, LI J . Analysis of MYB transcription factor family based on transcriptome sequencing in Lycium ruthenicum Murr. Scientia Agricultura Sinica, 2017,50(20):3991-4002. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.20.013 |
|
[30] | 姜秀明, 牛义岭, 许向阳 . 番茄NAC基因家族的系统进化及表达分析. 分子植物育种, 2016,14(8):1948-1964. |
JIANG X M, NIU Y L, XU X Y . Phylogenetic evolution and expression analysis of NAC gene family in tomato ( Solanum lycopersicum). Molecular Plant Breeding, 2016,14(8):1948-1964. (in Chinese) | |
[31] |
MAO K, DONG Q L, LI C, LIU C H, MA F W . Genome wide identification and characterization of apple bHLH transcription factors and expression analysis in response to drought and salt stress. Frontiers in Plant Science, 2017,8:480.
doi: 10.3389/fpls.2017.00480 pmid: 28443104 |
[32] |
孙明岳, 周君, 谭秋平, 付喜玲, 陈修德, 李玲, 高东升 . 苹果bZIP转录因子家族生物信息学分析及其在休眠芽中的表达. 中国农业科学, 2016,49(7):1325-1345.
doi: 10.3864/j.issn.0578-1752.2016.07.010 |
SUN M Y, ZHOU J, TAN Q P, FU X L, CHEN X D, LI L, GAO D S . Analysis of basic leucine zipper genes and their expression during bud dormancy in apple ( Malus×domestica). Scientia Agricultura Sinica, 2016,49(7):1325-1345. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.07.010 |
|
[33] | 董蔚, 邬培祥, 杨宁, 刘锡江, 宋玉光 . 紫花苜蓿盐胁迫响应WRKY转录因子的克隆及表达特征分析. 植物生理学报, 2018,54(9):1481-1489. |
DONG W, WU P X, YANG N, LIU X J, SONG Y G . Cloning and expression analysis of WRKY transcription factor involved in salinity stress in alfalfa. Plant Physiology Journal, 2018,54(9):1481-1489. (in Chinese) | |
[34] |
王小非, 刘鑫, 苏玲, 孙永江, 张世忠, 郝玉金, 由春香 . 番茄LBD基因家族的全基因组序列鉴定及其进化和表达分析. 中国农业科学, 2013,46(12):2501-2513.
doi: 10.3864/j.issn.0578-1752.2013.12.011 |
WANG X F, LIU X, SU L, SUN Y J, ZHANG S Z, HAO Y J, YOU C X . Identification, evolution and expression analysis of the LBD gene family in tomato. Scientia Agricultura Sinica, 2013,46(12):2501-2513. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.12.011 |
|
[35] |
CASTAINGS L, CAMARGO A, POCHOLLE D, GAUDON V, TEXIER Y, BOUTET-MERCEY S, TACONNAT L, RENOU J P, DANIEL-VEDELE F, FERNANDEZ E, MEYER C, KRAPP A . The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. The Plant Journal, 2009,57(3):426-435.
doi: 10.1111/j.1365-313X.2008.03695.x pmid: 18826430 |
[36] |
LIN J S, LI X L, LUO Z P, MYSORE K S, WEN J Q, XIE F . NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula. Nature Plants, 2018,4(11):942-952.
doi: 10.1038/s41477-018-0261-3 pmid: 30297831 |
[37] |
GUAN P Z, RIPOLL J J, WANG R H, VUONG L, BAILEY-STEINITZ L J, YE D N, CRAWFORD N M . Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proceedings of the National Academy of Sciences of the USA, 2017,114(9):2419-2424.
doi: 10.1073/pnas.1615676114 pmid: 28202720 |
[38] |
朱新宇, 吕万胜, 余春梅, 汪保华 . 根瘤感受样基因的进化: 结构歧异与功能分化. 植物学报, 2013,48(5):519-530.
doi: 10.3724/SP.J.1259.2013.00519 |
ZHU X Y, LÜ W S, YU C M, WANG B H . Evolution of nodular inception-like genes: Structural divergence and functional differentiation. Chinese Bulletin of Botany, 2013,48(5):519-530. (in Chinese)
doi: 10.3724/SP.J.1259.2013.00519 |
|
[39] |
YANAGISAWA S . Transcription factors involved in controlling the expression of nitrate reductase genes in higher plants. Plant Science, 2014,229:167-171.
doi: 10.1016/j.plantsci.2014.09.006 |
[40] |
KONISHI M, YANAGISAWA S . Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression. Journal of Experimental Botany, 2014,65(19):5589-5600.
doi: 10.1093/jxb/eru267 |
[1] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[2] | 李世佳,吕紫敬,赵锦. 枣R2R3-MYB亚家族基因鉴定及其在果实发育中的表达分析[J]. 中国农业科学, 2022, 55(6): 1199-1212. |
[3] | 陈学森, 伊华林, 王楠, 张敏, 姜生辉, 徐娟, 毛志泉, 张宗营, 王志刚, 姜召涛, 徐月华, 李建明. 芽变选种推动世界苹果和柑橘产业优质高效发展案例解读[J]. 中国农业科学, 2022, 55(4): 755-768. |
[4] | 路翔, 高源, 王昆, 孙思邈, 李连文, 李海飞, 李青山, 冯建荣, 王大江. 苹果栽培品种不同族系香气特征分析[J]. 中国农业科学, 2022, 55(3): 543-557. |
[5] | 高小琴,聂继云,陈秋生,韩令喜,刘璐,程杨,刘明雨. 基于矿物元素指纹技术的‘富士’苹果产地溯源[J]. 中国农业科学, 2022, 55(21): 4252-4264. |
[6] | 陈凤琼, 陈秋森, 林佳昕, 王雅亭, 刘汉林, 梁冰若诗, 邓艺茹, 任春元, 张玉先, 杨凤军, 于高波, 魏金鹏, 王孟雪. 番茄DIR基因家族鉴定及其对非生物胁迫响应的分析[J]. 中国农业科学, 2022, 55(19): 3807-3821. |
[7] | 储宝华,曹富国,卞宁宁,钱谦,李中兴,李雪薇,刘泽远,马锋旺,管清美. 84个苹果栽培品种对斑点落叶病的抗性评价和全基因组关联分析[J]. 中国农业科学, 2022, 55(18): 3613-3628. |
[8] | 解斌,安秀红,陈艳辉,程存刚,康国栋,周江涛,赵德英,李壮,张艳珍,杨安. 不同苹果砧木对持续低磷的响应及适应性评价[J]. 中国农业科学, 2022, 55(13): 2598-2612. |
[9] | 宋博文,杨龙,潘云飞,李海强,李浩,冯宏祖,陆宴辉. 农田景观格局对南疆苹果园梨小食心虫成虫种群动态的影响[J]. 中国农业科学, 2022, 55(1): 85-95. |
[10] | 王雍,李思妍,何思锐,张迪,连帅,王建发,武瑞. BLV-miRNA跨界调控人类靶基因预测及生物信息学分析[J]. 中国农业科学, 2021, 54(3): 662-674. |
[11] | 沙仁和,兰黎明,王三红,罗昌国. 苹果转录因子MdWRKY40b抗白粉病的机理[J]. 中国农业科学, 2021, 54(24): 5220-5229. |
[12] | 葛欣竺,史宇星,王莎莎,刘智慧,蔡文杰,周敏,王世贵,唐斌. 异色瓢虫丙酮酸激酶基因序列分析及其调控海藻糖代谢功能[J]. 中国农业科学, 2021, 54(23): 5021-5031. |
[13] | 曹钰晗,李紫腾,张静怡,张静娜,胡同乐,王树桐,王亚南,曹克强. 我国苹果斑点落叶病菌携带dsRNA分析及一种dsRNA病毒的鉴定[J]. 中国农业科学, 2021, 54(22): 4787-4799. |
[14] | 李紫腾,曹钰晗,李楠,孟祥龙,胡同乐,王树桐,王亚南,曹克强. 苹果锈果类病毒在7个品种苹果上的分子变异及系统发育关系[J]. 中国农业科学, 2021, 54(20): 4326-4336. |
[15] | 徐欢欢,李逸,高伟,王永勤,刘乐承. 洋葱γ-谷氨酰转肽酶AcGGT的克隆与鉴定[J]. 中国农业科学, 2021, 54(19): 4169-4178. |
|