中国农业科学 ›› 2019, Vol. 52 ›› Issue (2): 191-200.doi: 10.3864/j.issn.0578-1752.2019.02.001
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
收稿日期:
2018-07-13
接受日期:
2018-10-11
出版日期:
2019-01-16
发布日期:
2019-01-21
通讯作者:
李润植
作者简介:
郝青婷,E-mail: 基金资助:
HAO QingTing,ZHANG Fei,JI XiaJie,XUE JinAi,LI RunZhi()
Received:
2018-07-13
Accepted:
2018-10-11
Online:
2019-01-16
Published:
2019-01-21
Contact:
RunZhi LI
摘要:
【目的】 植物源环氧化脂肪酸(epoxy fatty acids,EFAs)是生产高值化工产品的优异可再生原材料。EFAs仅在一些野生植物种子中高水平合成和积累,难以规模化利用。通过在普通油料作物大豆(Glycine max (L.) Merr.)发育种子中组装环氧化脂肪酸合成途径,以期实现这类珍稀脂肪酸(unusual fatty acids,UFAs)的商业化绿色生产。【方法】 通过构建琉璃菊(Stokesia laevis)脂肪酸环氧化酶(epoxygenase,SlEPX)基因种子特异表达载体,基于体细胞胚发生的粒子轰击法对大豆(cv. Jack)进行遗传转化,经连续选择和鉴定,获得表型稳定的高代转基因大豆株系。分别运用PCR和实时荧光定量PCR检测外源基因SlEPX的整合及在大豆发育种子中的表达谱。统计分析SlEPX转基因大豆籽粒形态和大小、百粒重以及种子萌发率等表型,应用气相色谱和凯氏定氮法测试种子油脂和蛋白等相关生理生化特性。【结果】 外源基因SlEPX稳定整合于大豆基因组,且能在高代转基因大豆发育种子中正确有效表达。SlEPX转基因大豆种子新合成积累了2.9%的EFAs,相应的亚油酸(18﹕2Δ9,12)含量减低8%。与对照相比,SlEPX转基因大豆种子变长,表皮多皱褶。种子大小测量显示,转基因大豆小粒种子(粒径<4 mm)占比明显增加。转基因与对照大豆的种子发芽率无明显差异,然而转基因植株生长缓慢。转基因大豆种子油脂含量、蛋白质含量和百粒重分别减少5%、6%和8.28%。进一步生化分析发现,转基因大豆新合成的EFAs,绝大部分结合于卵磷脂(phosphatidylcholine,PC,占12.6%)分子,仅少量结合于甘油三酯(triacylglycerol,TAG,占2.3%)。这些数据表明在转基因大豆种子中,外源SlEPX酶能正确催化亚油酸(18﹕2Δ9,12)生成环氧化脂肪酸即斑鸠菊酸(vernolic acid,Va)(12-epoxy-18﹕1Δ9)。但是,绝大多数斑鸠菊酸积累于构成细胞膜的主要成分PC分子中,而没有转移整合进入贮藏的TAG分子。大量新合成的斑鸠菊酸结合于PC分子可能损伤宿主细胞膜稳态和生理反应,导致转基因大豆产生不利表型。【结论】 在大豆发育种子中单独表达外源脂肪酸环氧化酶,能催化合成少量EFAs,但同时产生一些不利表型。在SlEPX转基因大豆种子中共表达DGAT或PDAT,既可实现环氧化脂肪酸在TAG中富集,同时还能消除环氧化脂肪酸在细胞膜中的积累及其所导致的负效应。
郝青婷,张飞,吉夏洁,薛金爱,李润植. 脂肪酸环氧化酶SlEPX转基因大豆的表型分析[J]. 中国农业科学, 2019, 52(2): 191-200.
HAO QingTing,ZHANG Fei,JI XiaJie,XUE JinAi,LI RunZhi. Phenotypic Analysis of Epoxygenase-Transgenic Soybeans[J]. Scientia Agricultura Sinica, 2019, 52(2): 191-200.
[1] |
NAPIER J A, GRAHAM I A . Tailoring plant lipid composition: Designer oilseeds come of age. Current Opinion in Plant Biology, 2010,13(3):329-336.
doi: 10.1016/j.pbi.2010.01.008 |
[2] | WILSON R F, HILDEBRAND D . Engineering status, challenges and advantages of oil crops. Plant Biotechnology for Sustainable Production of Energy and Co-products, 2010: 209-259. |
[3] | VAN DE LOO F J, FOX B G, SOMERVILLE C . Unusual fatty acids//Moore J T S. Lipid Metabolism in Plants. Boca Raton: CRC Press, 1993: 91-126. |
[4] |
JAWORSKI J, CAHOON E B . Industrial oils from transgenic plants. Current Opinion in Plant Biology, 2003,6(2):178-184.
doi: 10.1016/S1369-5266(03)00013-X pmid: 12667876 |
[5] | 孙振钧, 吕丽媛, 伍玉鹏 . 蓖麻产业发展: 从种植到利用. 中国农业大学学报, 2012,17(6):204-214. |
SUN Z J, LÜL Y, WU Y P . Castor industry development: From cultivation to product exploitation. Journal of China Agricultural University, 2012,17(6):204-214. (in Chinese) | |
[6] | PERDUE R E . Vernonia-bursting with potential. Agriculture English, 1989,70:11-13. |
[7] |
THOMPSON A E, DIERIG D A, KLEIMAN R . Variation inVernonia galamensis flowering characteristics, seed oil and vernolic acid contents. Industrial Crops and Products, 1994,3(3):175-183.
doi: 10.1016/0926-6690(94)90065-5 |
[8] | 路子显 . 论大豆进口与我国粮食质量安全. 粮食问题研究, 2017(1):4-9. |
LU Z X . Soybean import and grain quality and safety in China.Grain Issues Research, 2017(1):4-9. (in Chinese) | |
[9] |
李擎天, 牛素玲, 陈受宜, 张劲松 . 植物种子油脂积累的转录调控及在大豆中的研究进展. 大豆科学, 2013,32(1):124-129, 132.
doi: 10.3969/j.issn.1000-9841.2013.01.029 |
LI Q T, NIU S L, CHEN S Y, ZHANG J S . Transcriptional regulation of seed oil accumulation and current advances in soybean research. Soybean Science, 2013,32(1):124-129, 132. (in Chinese)
doi: 10.3969/j.issn.1000-9841.2013.01.029 |
|
[10] |
SCHMUTZ J, CANNON S B, SCHLUETER J, MA J, MITROS T, NELSON W, HYTEN D L, SONG Q, THELEN J J, CHENG J, XU D, HELLSTEN U, MAY G D, YU Y, SAKURAI T, UMEZAWA T, BHATTACHARYYA M K, SANDHU D, VALLIYODAN B, LINDQUIST E, PETO M, GRANT D, SHU S, GOODSTEIN D, BARRY K, FUTRELL-GRIGGS M, ABERNATHY B, DU J, TIAN Z, ZHU L, GILL N, JOSHI T, LIBAULT M, SETHURAMAN A, ZHANG X C, SHINOZAKI K, NGUYEN H T, WING R A, CREGAN P, SPECHT J, GRIMWOOD J, ROKHSAR D, STACEY G, SHOEMAKER R C, JACKSON S A . Genome sequence of the palaeopolyploid soybean. Nature, 2010,463(7278):178-183.
doi: 10.1038/nature08670 pmid: 20075913 |
[11] |
LIU W, TORISKY R S, MCALLISTER K P, AVDIUSHKO S, HILDEBRAND D, COLLINS G B . A mammalian desaturase gene lowers saturated fatty acid levels in transgenic soybean embryos. Plant Cell Tissue and Organ Culture, 1996,47:33-42.
doi: 10.1007/BF02318963 |
[12] | 岳爱琴, 孙希平, 李润植 . 食用植物油脂的代谢工程. 植物生理与分子生物学学报, 2007,33(6):489-498. |
YUE A Q, SUN X P, LI R Z . Metabolic engineering of edible vegetable oils. Journal of Plant Physiology and Molecular Biology, 2007,33(6):489-498. (in Chinese) | |
[13] | KINNEY A J, CAHOON E B, DAMUDE H G, HITZ W D, LIU Z B, KOLAR C W . Production of very long chain polyunsaturated fatty acids in oil seed plants: US, US 8084074 B2[P]. 2011. |
[14] |
CAHOON E B, OHLROGGE J B . Metabolic evidence for the involvement of a [delta]4-palmitoyl- acyl carrier protein desaturase in petroselinic acid synthesis in coriander endosperm and transgenic tobacco cells. Plant Physiology, 1994,104(3):827-837.
doi: 10.1104/pp.104.3.827 pmid: 12232129 |
[15] |
CARLSSON A S . Plant oils as feedstock alternatives to petroleum-a short survey of potential oil crop platforms. Biochimie, 2009,91(6):665-670.
doi: 10.1016/j.biochi.2009.03.021 pmid: 19375482 |
[16] |
DAI S, PETRUCCELLI S, ORDIZ M I, ZHANG Z, CHEN S, BEACHY R N . Functional analysis of RF2a, a rice transcription factor. Journal of Biological Chemistry, 2003,278(38):36396-36402.
doi: 10.1074/jbc.M304862200 pmid: 12855676 |
[17] |
XIA W, BUDGE S M . Simultaneous quantification of epoxy and hydroxy fatty acids as oxidation products of triacylglycerols in edible oils. The Journal of Chromatography A, 2018,1537:83-90.
doi: 10.1016/j.chroma.2017.12.066 pmid: 29370919 |
[18] | ZHANG X, WAN X, CAO H, DEWIL R, DENG L, WANG F, TAN T, NIE K . Chemo-enzymatic epoxidation of Sapindus mukurossi fatty acids catalyzed with Candida sp. 99-125 lipase in a solvent-free system. Industrial Crops and Products, 2017,98:10-18. |
[19] |
BAFOR M, SMITH M A, JONSSON L, STOBART K, STYMNE S . Biosynthesis of Vernoleate (cis-2-epoxyoctadeca-cis-9-enoate) in microsomal preparations from developing endosperm of Euphorbia lagascae. Archives of Biochemistry and Biophysics, 1993,303(1):145-151.
doi: 10.1006/abbi.1993.1265 pmid: 8489257 |
[20] | LIU L, HAMMOND E G, NIKOLAU B J . In vivo studies of the biosynthesis of vernolic acid in the seed of Vernonia galamensis. Lipids, 1998,33(12):1217-1221. |
[21] |
CAHOON E B, RIPP K G, HALL S E . Transgenic production of epoxy fatty acids by expression of a cytochrome P450 enzyme from Euphorbia lagascae seed. Plant Physiology, 2002,128(2):615-624.
doi: 10.2307/4280328 |
[22] |
LEE M, LENMAN M, BANAŚ A, BAFOR M, SINGH S, SCHWEIZER M, NILSSON R, LILJENBERG C, DAHLQVIST A, GUMMESON P O, SJÖDAHL S, GREEN A, STYMNE S . Identification of non-hemediiron proteins that catalyze triple bond and epoxy group formation. Science, 1998,280(5365):915-918.
doi: 10.1126/science.280.5365.915 pmid: 9572738 |
[23] |
ZHOU X R, SINGH S, LIU Q, GREEN A . Combined transgenic expression of D12-desaturase and D12-epoxygenase in high linoleic acid seeds leads to increased accumulation of vernolic acid. Functional Plant Biology, 2006,33(6):585-592.
doi: 10.1071/FP05297 |
[24] | HATANAKA T, SHIMIZU R, HILDEBRAND D . Expression of a Stokesia laevis epoxygenase gene. Phytochemistry, 2004,65(15):2189-2196. |
[25] |
LI R Z, YU K S, WU Y M, TATENO M, HATANAKA T, HILDEBRAND D F . Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds. Metabolic Engineering, 2012,14(1):29-38.
doi: 10.1016/j.ymben.2011.11.004 pmid: 22107928 |
[26] | 张玲慧 . 紫苏种子油脂代谢及限速酶DGAT1基因的表达分析[D]. 太谷: 山西农业大学, 2014. |
ZHANG L H . Study on the lipid metabolism in seeds and expression pattern of the rate-limiting enzyme gene DGAT1 of Perilla[D]. Taigu: Shanxi Agricultural University, 2014. ( in Chinese) | |
[27] |
CAHOON E B, SHOCKEY J M, DIETRICH C R, GIDDA S K, MULLEN R T, DYER J M . Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: Solving bottlenecks in fatty acid flux. Current Opinion in Plant Biology, 2007,10(3):236-244.
doi: 10.1016/j.pbi.2007.04.005 pmid: 17434788 |
[28] |
EL-SAYED R . Synthesis of an Efficiency Heterocyclic Systems, Surface Properties and Potential Pharmacological Interest. Journal of Oleo Science, 2018,67(8):991-1003.
doi: 10.5650/jos.ess17222 |
[29] |
ROY J, WATSON J E, HONG I S, FAN T M, DAS A . Antitumorigenic Properties of Omega-3 Endocannabinoid Epoxides. Journal of Medicinal Chemistry, 2018,61(13):5569-5579.
doi: 10.1021/acs.jmedchem.8b00243 |
[30] |
SPECTOR A A, KIM H Y . Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochimica et Biophysica Acta, 2015,1851(4):356-365.
doi: 10.1016/j.bbalip.2014.07.020 pmid: 25093613 |
[31] |
HASLAM R P, SAYANOVA O, KIM H J, CAHOON E B, NAPIER J A . Synthetic redesign of plant lipid metabolism. The Plant Journal, 2016,87(1):76-86.
doi: 10.1111/tpj.13172 |
[32] |
FURUHASHI T, NAKAMURA T, FRAGNER L, ROUSTAN V, SCHON V, WECKWERTH W . Biodiesel and poly-unsaturated fatty acids production from algae and crop plants a rapid and comprehensive workflow for lipid analysis. Biotechnology Journal, 2016,10:1262-1267.
doi: 10.1002/biot.201400197 pmid: 27440175 |
[33] | BLEE E . Biosynthesis of phytooxylipins: The Peroxygenase pathway. European Journal of Lipid Science and Technology, 1998,100(4/5):121-127. |
[34] | HITZ W D . Fatty acid modifying enzymes from developing seeds of Vernonia galamensis: US, US 5846784A[P]. 1998. |
[35] |
SINGH S, THOMAEUS S, LEE M, STYMNE S, GREEN A . Transgenic expression of a D12-epoxygenase gene in Arabidopsis seeds inhibits accumulation of linoleic acid. Planta, 2001,212(5):872-879.
doi: 10.1007/s004250000456 pmid: 11346964 |
[36] | BROWSE J A, SHOCKEY J M, BURGAL J J . Enhancement of hydroxy fatty acid accumulation in oilseed plants: EP, US 8101818[P]. 2012. |
[37] |
CAHOON E B, DIETRICH C R, MEYER K, DAMUDE H G, DYER J M, KINNEY A J . Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds. Phytochemistry, 2006,67(12):1166-1176.
doi: 10.1016/j.phytochem.2006.04.013 pmid: 16762380 |
[38] |
CAHOON E B, RIPP K G, HALL S E, KINNEY A J . Formation of conjugated delta 8,delta 10-double bonds by delta 12-oleic-acid desaturase-related enzymes: Biosynthetic origin of calendic acid. Journal of Biological Chemistry, 2001,276(4):2637-2643.
doi: 10.1074/jbc.M009188200 |
[39] |
BATES P D, JOHNSON S R, CAO X, LI J, NAM J W, JAWORSKI J G, OHLROGGE J B, BROWSE J . FA synthesis is inhibited by inefficient utilization of unusual FAs for glycerolipid assembly. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(3):1204-1209.
doi: 10.1073/pnas.1318511111 pmid: 24398521 |
[40] | BROUN P, SOMERVILLE C . Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiology, 1997,113(3):933-942. |
[41] |
LU C F, FULDA M, WALLIS J G, BROWSE J . A high-throughput screen for genes from castor that boost hydroxy fatty acid accumulation in seed oils of transgenic Arabidopsis. The Plant Journal, 2006,45(5):847-856.
doi: 10.1111/j.1365-313X.2005.02636.x pmid: 16460516 |
[42] |
ERP H V, BATES P D, BURGAL J, SHOCKEY J, BROWSE J . Castor phospholipid: Diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis. Plant Physiology, 2011,155(2):683-693.
doi: 10.1104/pp.110.167239 pmid: 21173026 |
[43] |
BURGAL J, SHOCKEY J, LU C F, DYER J, LARSON T, GRAHAM I, BROWSE J . Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnology Journal, 2008,6(8):819-831.
doi: 10.1111/j.1467-7652.2008.00361.x pmid: 18643899 |
[44] |
LI R Z, YU K S, HILDEBRAND D F . DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids, 2010,45(2):145-157.
doi: 10.1007/s11745-010-3385-4 pmid: 20101470 |
[45] |
LI R Z, HATANAKA T, YU K S, WU Y M, FUKUSHIGE H, HILDEBRAND D . Soybean oil biosynthesis: role of diacylglycerol acyltransferases. Functional & Integrative Genomics, 2013,13(1):99-113.
doi: 10.1007/s10142-012-0306-z pmid: 23322364 |
[1] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[2] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[3] | 郭世博,张方亮,张镇涛,周丽涛,赵锦,杨晓光. 全球气候变暖对中国种植制度的可能影响XIV.东北大豆高产稳产区及农业气象灾害分析[J]. 中国农业科学, 2022, 55(9): 1763-1780. |
[4] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[5] | 阿依木古丽·阿不都热依木,阿尔祖古丽·阿依丁,王家敏,石嘉琛,马芳芳,蔡勇,乔自林. 大豆异黄酮对牦牛卵巢颗粒细胞增殖和凋亡的影响[J]. 中国农业科学, 2022, 55(8): 1667-1675. |
[6] | 王绿阳,崔雷鸿,冯江银,洪秋霞,游美敬,保浩宇,杭苏琴. 钙敏感受体和胆囊收缩素-1受体介导大豆蛋白水解物对小鼠食欲的影响[J]. 中国农业科学, 2022, 55(4): 807-815. |
[7] | 姜芬芬, 孙磊, 刘方东, 王吴彬, 邢光南, 张焦平, 张逢凯, 李宁, 李艳, 贺建波, 盖钧镒. 世界大豆生育阶段光温综合反应的地理分化和演化[J]. 中国农业科学, 2022, 55(3): 451-466. |
[8] | 闫强,薛冬,胡亚群,周琰琰,韦雅雯,袁星星,陈新. 大豆根特异性GmPR1-9启动子的鉴定及其在根腐病抗性中的应用[J]. 中国农业科学, 2022, 55(20): 3885-3896. |
[9] | 王巧娟,何虹,李亮,张超,蔡焕杰. 基于AquaCrop模型的大豆灌溉制度优化研究[J]. 中国农业科学, 2022, 55(17): 3365-3379. |
[10] | 原程,张玉先,王孟雪,黄炳林,辛明强,尹小刚,胡国华,张明聪. 中耕时间和深度对大豆光合特性及产量形成的影响[J]. 中国农业科学, 2022, 55(15): 2911-2926. |
[11] | 赵玎玲,王梦璇,孙天杰,苏伟华,赵志华,肖付明,赵青松,闫龙,张洁,王冬梅. 大豆单锌指蛋白基因GmSZFP的克隆及其在SMV与寄主互作中的功能[J]. 中国农业科学, 2022, 55(14): 2685-2695. |
[12] | 任俊波,杨雪丽,陈平,杜青,彭西红,郑本川,雍太文,杨文钰. 种间距离对玉米-大豆带状套作土壤理化性状及根系空间分布的影响[J]. 中国农业科学, 2022, 55(10): 1903-1916. |
[13] | 刘函西,吕浩,郭广雨,刘冬旭,石岩,孙志君,张泽鑫,张艳娇,文莹楠,王洁琦,刘春燕,陈庆山,辛大伟,王锦辉. 大豆根瘤菌HH103 rhcN突变对结瘤能力的影响[J]. 中国农业科学, 2021, 54(6): 1104-1111. |
[14] | 李佳佳,洪慧龙,万明月,储丽,赵敬会,汪明华,徐志鹏,张阴,黄志平,张文明,王晓波,邱丽娟. 基于近红外光谱的大豆茎秆化学组分含量检测模型构建与应用[J]. 中国农业科学, 2021, 54(5): 887-900. |
[15] | 蔡倩,孙占祥,郑家明,王文斌,白伟,冯良山,杨宁,向午燕,张哲,冯晨. 辽西半干旱区玉米大豆间作模式对作物干物质积累分配、产量及土地生产力的影响[J]. 中国农业科学, 2021, 54(5): 909-920. |
|