中国农业科学 ›› 2018, Vol. 51 ›› Issue (24): 4647-4658.doi: 10.3864/j.issn.0578-1752.2018.24.006
收稿日期:
2018-06-22
接受日期:
2018-09-15
出版日期:
2018-12-16
发布日期:
2018-12-16
基金资助:
SUN BingXue(),SHI YanXia(
),ZHU FaDI,XIE XueWen,CHAI ALi,LI BaoJu(
)
Received:
2018-06-22
Accepted:
2018-09-15
Online:
2018-12-16
Published:
2018-12-16
摘要:
目的 建立一种快速、高效、定量检测黄瓜多主棒孢(Corynespora cassiicola)琥珀酸脱氢酶B亚基(SdhB)H278R突变的实时荧光定量PCR(AS-real-time PCR)检测方法,并进行效果验证。方法 从北京市大兴区采集、分离纯化病原菌,获得24株多主棒孢的单孢菌株,采用菌丝生长速率法测定其对啶酰菌胺的EC50,随机选取4株敏感(S)和8株抗性(R)菌株测其菌丝生长速率、产孢量和致病性。采用引物对Cc-SdhB-F/R测定多主棒孢SdhB基因序列,检测SdhB的碱基变化。基于多主棒孢SdhB的相同核酸序列和SNP位点设计内参引物B-H278R-TY-F/R和特异性引物B-H278R-2F/2R14,建立并优化AS-real-time PCR定量检测体系,并对引物的特异性、熔解曲线和灵敏度进行评价。利用该体系分别检测含有H278R不同突变比例的DNA和孢子悬浮液。结果 测定的24个菌株中,敏感菌株占66.7%,EC50值为0.057—0.563 μg·mL -1;抗性菌株占33.3%,EC50值为5.395—11.710 μg·mL -1。抗性和敏感菌株仅在菌丝生长速率方面存在显著性差异,且菌丝生长速率与EC50之间存在显著负相关。在产孢量和致病性方面不存在显著性差异。测序分析发现抗性菌株均携带SdhB-H278R突变。本研究设计的引物B-H278R-2F和B-H278R-2F2R14特异性强,仅对多主棒孢SdhB-H278R突变菌株的DNA有扩增条带,对其余供试菌株均无条带扩增。普通AS-PCR检测的灵敏度为91 pg·μL -1, 而AS-real-time PCR的灵敏度可达9.1 pg·μL -1, 灵敏度为普通AS-PCR的10倍。以基因组DNA为标准品,构建的AS-real-time PCR标准曲线ΔCT值与相对模板浓度的对数有良好的线性关系,相关系数为0.9857, 扩增效率为92.59%。熔解曲线吸收峰单一,内参引物B-H278R-TY-F/R和特异性引物B-H278R-2F/2R14分别在87.81℃和91.62℃处出现单一特异性峰。用DNA和孢子悬浮液对标准曲线进行验证,结果表明随着相对模板浓度逐渐降低,该检测体系的准确性逐渐升高且检测下限为5%,同时预期值与试验值呈线性相关(R 2=0.9998和R 2=0.9922)。 结论 建立了一种高效、定量、快速的AS-real-time PCR检测体系用于SdhB-H278R突变位点的检测,可为杀菌剂的抗性治理提供理论依据。
孙炳学,石延霞,朱发娣,谢学文,柴阿丽,李宝聚. 多主棒孢SdhB-H278R突变位点AS-real-time PCR 定量检测体系的建立[J]. 中国农业科学, 2018, 51(24): 4647-4658.
SUN BingXue,SHI YanXia,ZHU FaDI,XIE XueWen,CHAI ALi,LI BaoJu. Establishment of AS-real-time PCR for Quantitatively Detecting the H278R Allele in the SdhB Associated with Corynespora cassiicola in Cucumber[J]. Scientia Agricultura Sinica, 2018, 51(24): 4647-4658.
表1
引物信息"
引物名称 Primer name | 序列 Sequence | 引物长度 Length of primer (bp) | 产物长度 Length of product (bp) |
---|---|---|---|
Cc-SdhB-F | CACTCTTCTTCGCCATCC | 18 | 1422 |
Cc-SdhB-R | CATCACACTCACGGTCAC | 18 | |
B-H278R-2F | GTGAATACCGCCAGTCCAA | 19 | 244 |
B-H278R-2R14 | CAGTTGAGAATCGCGC | 16 | |
B-H278R-TY-F | GACCTTTAGGCGAAGTTGC | 19 | 246 |
B-H278R-TY-R | CTGCTTGTAGAAGAGCGTCAT | 21 |
表2
供试菌株敏感性测定"
序号 Number | 菌株编号 Strain code | 采集时间 Collection time | 采集地 Collection area | EC50 (μg·mL-1) | 毒力回归方程Toxicity regression equation (y=) | 相关系数 Coefficient (R2) | 突变类型Mutation type | 敏感性 Sensitivity |
---|---|---|---|---|---|---|---|---|
1 | HG17031006-1 | 2017 | 北京Beijing | 9.261 | 1.2509x+3.7941 | 0.9995 | + | R |
2 | HG17031006-2 | 2017 | 北京Beijing | 5.925 | 1.1082x+4.1659 | 0.9788 | + | R |
3 | HG17031006-3 | 2017 | 北京Beijing | 0.482 | 0.4848x+5.1535 | 0.9899 | - | S |
4 | HG17031006-4 | 2017 | 北京Beijing | 0.227 | 0.4565x+5.2941 | 0.9910 | - | S |
5 | HG17031006-5 | 2017 | 北京Beijing | 5.395 | 0.6544x+4.4397 | 0.9276 | + | R |
6 | HG17031007-1 | 2017 | 北京Beijing | 0.337 | 0.4846x+5.2290 | 0.9905 | - | S |
7 | HG17031007-2 | 2017 | 北京Beijing | 0.057 | 1.6824x+7.0839 | 0.9777 | - | S |
8 | HG17031007-3 | 2017 | 北京Beijing | 0.261 | 2.1962x+4.9202 | 0.9905 | - | S |
9 | HG17031007-4 | 2017 | 北京Beijing | 0.383 | 0.4912x+5.2047 | 0.9331 | - | S |
10 | HG17031007-5 | 2017 | 北京Beijing | 0.221 | 0.5069x+5.9325 | 0.9746 | - | S |
11 | HG17031008-1 | 2017 | 北京Beijing | 7.585 | 0.9496x+4.1644 | 0.9998 | + | R |
12 | HG17031008-2 | 2017 | 北京Beijing | 0.535 | 1.5481x+5.8387 | 0.9219 | - | S |
13 | HG17031008-3 | 2017 | 北京Beijing | 6.089 | 1.0695x+4.1608 | 0.9998 | + | R |
14 | HG17031008-4 | 2017 | 北京Beijing | 7.408 | 1.0990x+4.0752 | 0.9961 | + | R |
15 | HG17031008-5 | 2017 | 北京Beijing | 7.309 | 1.3476x+3.8337 | 0.9967 | + | R |
16 | HG17031009-1 | 2017 | 北京Beijing | 0.495 | 1.1440x+5.6638 | 0.9038 | - | S |
17 | HG17031009-2 | 2017 | 北京Beijing | 0.469 | 1.4358x+6.3270 | 0.9929 | - | S |
18 | HG17031009-3 | 2017 | 北京Beijing | 0.550 | 1.1084x+5.9661 | 0.9944 | - | S |
19 | HG17031009-4 | 2017 | 北京Beijing | 0.484 | 0.5298x+5.1666 | 0.9791 | - | S |
20 | HG17031009-5 | 2017 | 北京Beijing | 11.710 | 0.6667x+4.2859 | 0.9154 | + | R |
21 | HG17031010-1 | 2017 | 北京Beijing | 0.216 | 0.5158x+5.3436 | 0.9991 | - | S |
22 | HG17031010-2 | 2017 | 北京Beijing | 0.563 | 1.3191x+5.6942 | 0.9225 | - | S |
23 | HG17031010-4 | 2017 | 北京Beijing | 0.296 | 0.6165x+5.3264 | 0.9897 | - | S |
24 | HG14102524-4 | 2014 | 河北Hebei | 0.316 | 2.9056x+3.5592 | 0.9945 | - | S |
25 | HG17031010-5 | 2017 | 北京Beijing | 0.274 | 1.0630x+5.7384 | 0.9129 | - | S |
26 | HG14102430-1 | 2014 | 河北Hebei | 22.371 | 0.9039x+3.7312 | 0.9652 | SdhB-H278Y | R |
27 | HG15050729-5 | 2015 | 辽宁Liaoning | 3.954 | 0.9434x+4.4106 | 0.9960 | SdhB-I280V | R |
28 | HG14102415-1 | 2014 | 河北Hebei | 1.111 | 0.8091x+4.4362 | 0.9967 | SdhB-P199S | R |
29 | HG15050701-1 | 2015 | 辽宁Liaoning | 19.526 | 0.7921x+4.0567 | 0.9967 | SdhC-P73S | R |
Table 3
The biological characteristics of resistance and sensitivity strains"
菌株编号 Strain code | 敏感性 Sensitivity | 菌丝生长速率(11d) Mycelium growth rate (cm·d-1) | 产孢量 Spore outputs (×105/mL) | 病斑直径 Lesion diameter (cm) |
---|---|---|---|---|
HG17031007-2 | S | 0.60±0.09f | 0.92±1.38a | 0.78±0.09efg |
HG17031010-1 | S | 0.61±0.09f | 7.00±4.61e | 0.65±0.26de |
HG14102524-4 | S | 0.61±0.01f | 3.85±1.99bcd | 0.84±0.16fg |
HG17031008-2 | S | 0.49±0.06de | 0.33±0.52a | 0.38±0.10ab |
HG17031006-2 | R | 0.49±0.04de | 5.15±2.41de | 0.70±0.26def |
HG17031008-4 | R | 0.45±0.05cd | 4.25±2.67bcd | 0.75±0.17efg |
HG17031006-5 | R | 0.30±0.03a | 2.31±2.06abc | 0.56±0.19cd |
HG17031008-1 | R | 0.37±0.02ab | 1.33±1.87a | 0.45±0.22abc |
HG17031008-3 | R | 0.56±0.08ef | 7.46±2.70e | 0.91±0.12g |
HG17031008-5 | R | 0.52±0.01de | 4.82±2.93cd | 0.54±0.05bcd |
HG17031006-1 | R | 0.37±0.02ab | 1.85±1.28ab | 0.80±0.09efg |
HG17031009-5 | R | 0.40±0.01bc | 4.00±2.80bcd | 0.33±0.07a |
[1] | 李宝聚, 高苇, 石延霞, 谢学文 . 多主棒孢和棒孢叶斑病的研究进展. 植物保护学报, 2012,39(2):171-176. |
LI B J, GAO W, SHI Y X, XIE X W . Progress in researches on Corynespora leaf spot. Acta Phytophylacica Sinica, 2012,39(2):171-176. (in Chinese) | |
[2] | 于淑晶, 王满意, 田芳, 赵卫光, 边强, 李宝聚 . 黄瓜棒孢叶斑病的防治及抗药性研究进展. 农药, 2014,53(1):7-11. |
YU S J, WANG M Y, TIAN F, ZHAO W G, BIAN Q, LI B J . Progress in research on control of cucumber Corynespora leaf spot and fungicide resistance. Agrochemicals, 2014,53(1):7-11. (in Chinese) | |
[3] | 李良孔, 袁善奎, 潘洪玉, 王岩 . 琥珀酸脱氢酶抑制剂类(SDHIs)杀菌剂及其抗性研究进展. 农药, 2011,50(3):165-169. |
LI L K, YUAN S K, PAN H Y, WANG Y . Progress in research on SDHIs fungicides and its resistance. Agrochemicals, 2011,50(3):165-169. (in Chinese) | |
[4] | 颜范勇, 刘冬青, 司马利锋, 石恒, 胡欣 . 新型烟酰胺类杀菌剂——啶酰菌胺. 农药, 2008,47(2):132-135. |
YAN F Y, LIU D Q, SIMA L F, SHI H, HU X . Boscalid, a novel carboxamide aka anilide class of fungicides. Agrochemicals, 2008,47(2):132-135. (in Chinese) | |
[5] | AVENOT H, MICHAILIDES T J . Resistance to boscalid fungicide in Alternaria alternata isolates from pistachio in California. Plant Disease, 2007,91(10):1345-1350. |
[6] |
YIN Y N, KIM Y K, XIAO C L . Molecular characterization of boscalid resistance in field isolates of Botrytis cinerea from apple. Phytopathology, 2011,101(8):986-995.
doi: 10.1094/PHYTO-01-11-0016 pmid: 21469935 |
[7] | AVENOT H F, THOMAS A, GITAITIS R D , JR LANGSTON D B,STEVENSON K L . Molecular characterization of boscalid- and penthiopyrad-resistant isolates of Didymella bryoniae and assessment of their sensitivity to fluopyram. Pest Management Science, 2012,68(4):645-651. |
[8] | WANG Y, DUAN Y B, WANG J X, ZHOU M G . A new point mutation in the iron-sulfur subunit of succinate dehydrogenase confers resistance to boscalid in Sclerotinia sclerotiorum. Molecular Plant Pathology, 2015,16(7):653-661. |
[9] |
MIYAMOTO T, ISHII H, SEKO T, KOBORI S, TOMITA Y . Occurrence of Corynespora cassiicola isolates resistant to boscalid on cucumber in Ibaraki Prefecture, Japan. Plant Pathology, 2009,58(6):1144-1151.
doi: 10.1111/j.1365-3059.2009.02151.x |
[10] | MIYAMOTO T, ISHII H, STAMMLER G, KOCH A, OGAWARA T, TOMITA Y, FOUNTAINE J M, USHIO S, SEKO T, KOBORI S . Distribution and molecular characterization of Corynespora cassiicola isolates resistant to boscalid. Plant Pathology, 2010,59(5):873-881. |
[11] | FURUYA S, SUZUKI S, KOBAYASHI H, SAITO S, TAKAYANAGI T . Rapid method for detecting resistance to a QoI fungicide in Plasmopara viticola populations. Pest Management Science, 2010,65(8):840-843. |
[12] |
AOKI Y, FURUYA S, SUZUKI S . Method for rapid detection of the PvCesA3 gene allele conferring resistance to mandipropamid, a carboxylic acid amide fungicide, in Plasmopara viticola populations. Pest Management Science, 2011,67(12):1557-1561.
doi: 10.1002/ps.2214 pmid: 21674751 |
[13] | 李红霞, 周明国 . 用等位基因特异性寡核苷酸(ASO)-PCR快速检测抗多菌灵的油菜菌核病菌. 中国农业科学, 2004,37(9):1396-1399. |
LI H X, ZHOU M G . Rapid identification of carbendazim resistant strains of sclerotinia sclerotiorum using allele-specific oligonucleotide (ASO)-PCR. Siientia Aricutura Sinica, 2004,37(9):1396-1399. (in Chinese) | |
[14] |
MALLIK I, ARABIAT S, PASCHE J S, BOLTON M D, PATEL J S, GUDMESTAD N C . Molecular characterization and detection of mutations associated with resistance to succinate dehydrogenase- inhibiting fungicides in Alternaria solani. Phytopathology, 2014,104(1):40-49.
doi: 10.1094/PHYTO-02-13-0041-R pmid: 23901829 |
[15] | WHEELER I, KENDALL S, BUTTERS J, HOLLOMON D . Detection of benzimidazole resistance in Rhynchosporium secalis using allele-specific oligonucleotide probes. Bulletin OEPP/EPPO Bulletin, 1995,25(1/2):113-116. |
[16] | DE MICCOLIS ANGELINI R M, MASIELLO M, ROTOLO C, POLLASTRO S, FARETRA F . Molecular characterization and detection of resistance to succinate dehydrogenase inhibitor fungicides in Botryotinia fuckeliana (Botrytis cinerea). Pest Management Science, 2014,70(12):1884-1893. |
[17] | LEHNER M S , JÚNIOR T J P, SILVA R A, VIEIRA R F, SCHNABEL G, MIZUBUTI E S G. Fungicide sensitivity of Sclerotinia sclerotiorum: A thorough assessment using discriminatory dose, EC50, high-resolution melting analysis, and description of new point mutation associated with thiophanate-methyl resistance. Plant Disease, 2015,99(11):1537-1543. |
[18] |
SAMARAS A, MADESIS P, KARAOGLANIDIS G S. Detection of sdhB gene mutations in SDHI-resistant isolates of Botrytis cinereal using high resolution melting (HRM)analysis.Frontiers in Microbiology , 2016, 7: Article 1815.
doi: 10.3389/fmicb.2016.01815 pmid: 27895633 |
[19] | 聂燕钗, 王斌, 赵子琴, 周怀谷 . 等位基因特异性PCR技术及其法医学应用. 法医学杂志, 2014,30(4):282-287. |
NIE Y C, WANG B, ZHAO Z Q, ZHOU H G . Allele-specific PCR and its application in forensic science. Journal of Forensic Medicine, 2014,30(4):282-287. (in Chinese) | |
[20] |
DIXON L J, SCHLUB R L, PERNEZNY K, DATNOFF L E . Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology, 2009,99(9):1015-1027.
doi: 10.1094/PHYTO-99-9-1015 pmid: 19671003 |
[21] | 杨苗 . 我国蔬菜棒孢叶斑病病原菌多样性研究[D]. 北京: 中国农业科学院, 2013. |
YANG M . Diversity of pathogen of corynespora leaf spot on vegetables in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. ( in Chinese) | |
[22] | 高苇, 李宝聚, 石延霞, 谢学文 . 河北青县黄瓜棒孢叶斑病病原菌种群分化的研究. 华北农学报, 2011,26(5):9-15. |
GAO W, LI B J, SHI Y X, XIE X W . Population differentiation of Corynespora cassiicola in Qing County, Hebei Province. Acta Agriculturae Boreali-Sinica, 2011,26(5):9-15. (in Chinese) | |
[23] | 李长松, 张眉, 李林, 李凡, 齐军山, 徐作珽, 张博 . 山东省黄瓜棒孢叶斑病(褐斑病)病原菌鉴定和防治 . 中国蔬菜, 2009(18):29-33. |
LI C S, ZHANG M, LI L, LI F, QI J S, XU Z T, ZHANG B . Identification of cucumber target leaf spot (brown spot) pathogen and its control .China Vegetables, 2009(18):29-33. (in Chinese) | |
[24] | KWON M K, KANG B R, CHO B H, KIM Y C . Occurrence of target leaf spot disease caused by Corynespora cassicola on cucumber in Korea. Plant Pathology, 2010,52(3):424. |
[25] | 余玲, 刘慧平, 韩巨才, 张宝俊 . 山西省灰霉菌对啶酰菌胺的敏感性测定. 山西农业大学学报(自然科学版), 2012,32(3):232-234. |
YU L, LIU H P, HAN J C, ZHANG B J . Sensitivity of Botrytis cinerea from Shanxi province to boscalid. Journal of Shanxi Agricultural University (Natural Science Edition), 2012,32(3):232-234. (in Chinese) | |
[26] |
VELOUKAS T, LEROCH M, HAHN M, KARAOGLANIDIS G S . Detection and molecular characterization of boscalid-resistant Botrytis cinerea isolates from strawberry. Plant Disease, 2011,95(10):1302-1307.
doi: 10.1094/PDIS-04-11-0317 |
[27] | 史晓晶 . 番茄早疫病菌对啶酰菌胺的抗性检测及抗性机理初探[D]. 太谷: 山西农业大学, 2015. |
SHI X J . Study on sensitivity of Alternaria solani to boscalid and resistant mechanisms[D]. Taigu: Shanxi Agricultural University, 2015. ( in Chinese) | |
[28] | YANG J H, BRANNEN P M, SCHNABEL G . Resistance in Alternaria alternate to SDHI fungicides causes rare disease outbreak in peach orchards. Plant Disease, 2015,99(1):65-70. |
[29] | HORSEFIELD R, YANKOVSKAYA V, SEXTON G, WHITTINGHAM W, SHIOMI K, OMURA S, BYRNE B, CECCHINI G, IWATA S . Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction. The Journal of Biological Chemistry, 2006,281(11):7309-7316. |
[30] |
LALÈVE A, GAMET S, WALKER A, DEBIEU D, TOQUIN V, FILLINGER S . Site-directed mutagenesis of the P225, N230 and H272 residues of succinate dehydrogenase subunit B from Botrytis cinerea highlights different roles in enzyme activity and inhibitor binding. Environmental Microbiology, 2014,16(7):2253-2266.
doi: 10.1111/1462-2920.12282 pmid: 24119086225230272 |
[31] | 高苇, 李宝聚, 王万立, 郝永娟, 石延霞 . 土壤中黄瓜棒孢叶斑病病原菌实时荧光定量PCR检测技术研究. 华北农学报, 2014,29(2):71-74. |
GAO W, LI B J, WANG W L, HAO Y J, SHI Y X . Detection of Corynespora cassiicola in soil with real-time quantitative PCR. Acta Agriculturae Boreali-Sinica, 2014,29(2):71-74. (in Chinese) | |
[32] | 陈璐 . 黄瓜细菌性角斑病菌和多主棒孢菌PCR检测技术的建立[D]. 北京: 中国农业科学院, 2014. |
CHEN L . PCR-based specific detection of Pseudomonas syrigae pv. lachrymans and Corynesopora cassiicola[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. ( in Chinese) | |
[33] |
MICHALECKA M, MALINOWSKI T, BRONIAREKNIEMIEC A, BIELENIN A . Real-time PCR assay with SNP-specific primers for the detection of a G143A mutation level in Venturia inaequalis field populations. Journal of Phytopathology, 2011,159(7/8):569-578.
doi: 10.1111/j.1439-0434.2011.01805.x |
[34] |
LUO Y, MA Z H, MICHAILIDES T J . Quantification of allele E198A in beta-tubulin conferring benzimidazole resistance in Monilinia fructicola using real-time PCR. Pest Management Science, 2007,63(12):1178-1184.
doi: 10.1002/ps.1425 pmid: 17912681 |
[35] | KIANIANMOMENI A, SCHWARZ G, FELSENSTEIN F G, WENZEL G . Validation of a real-time PCR for the quantitative estimation of a G143A mutation in the cytochrome bc1 gene of Pyrenophora teres. Pest Management Science, 2010,63(3):219-224. |
[1] | 李青林,张文涛,徐慧,孙京京. 低磷胁迫下黄瓜木质部与韧皮部汁液的代谢物变化[J]. 中国农业科学, 2022, 55(8): 1617-1629. |
[2] | 李桂香,李秀环,郝新昌,李智文,刘峰,刘西莉. 山东省多主棒孢对三种常用杀菌剂的敏感性监测及对氟吡菌酰胺的抗性[J]. 中国农业科学, 2022, 55(7): 1359-1370. |
[3] | 李志玲,李香菊,崔海兰,于海燕,陈景超. 牛筋草EPSPS酶联免疫试剂盒的研发及应用[J]. 中国农业科学, 2022, 55(24): 4851-4862. |
[4] | 王帅宇,张子腾,谢爱婷,董杰,杨建国,张爱环. 我国草地贪夜蛾种群杀虫剂靶标基因突变分析[J]. 中国农业科学, 2022, 55(20): 3948-3959. |
[5] | 康忱,赵雪芳,李亚栋,田哲娟,王鹏,吴志明. 黄瓜CC-NBS-LRR家族基因鉴定及在霜霉病和白粉病胁迫下的表达分析[J]. 中国农业科学, 2022, 55(19): 3751-3766. |
[6] | 尹飞,李振宇,SAMINA Shabbir,林庆胜. P450基因在氯虫苯甲酰胺不同抗性品系小菜蛾中的表达及功能分析[J]. 中国农业科学, 2022, 55(13): 2562-2571. |
[7] | 陈茜,刘英杰,董勇浩,刘金燕,李炜,徐蓬军,臧云,任广伟. 黄瓜花叶病毒侵染烟草对烟蚜生长发育、取食和选择行为的影响[J]. 中国农业科学, 2021, 54(8): 1673-1683. |
[8] | 石鑫,李莎,王志敏,付开赟,付文君,姜卫华. 新疆马铃薯甲虫对噻虫嗪的抗性监测及其细胞色素P450基因表达分析[J]. 中国农业科学, 2021, 54(14): 3004-3016. |
[9] | 王君正,张琪,高子星,马雪强,屈锋,胡晓辉. 两种微生物菌剂对有机基质袋培秋黄瓜产量、品质及根际环境的影响[J]. 中国农业科学, 2021, 54(14): 3077-3087. |
[10] | 李正刚,农媛,汤亚飞,佘小漫,于琳,蓝国兵,邓铭光,何自福. 侵染广东连州葫芦的黄瓜绿斑驳花叶病毒的分子特征 及致病性分析[J]. 中国农业科学, 2020, 53(5): 955-964. |
[11] | 周琪,刘小萍,薄凯亮,苗晗,董邵云,顾兴芳,张圣平. 黄瓜叶酸合成关键基因克隆与分析[J]. 中国农业科学, 2020, 53(18): 3764-3776. |
[12] | 宋维源,侯钰,赵剑宇,刘小凤,张小兰. 黄瓜CsRPL1/2的克隆及其功能分析[J]. 中国农业科学, 2020, 53(1): 148-159. |
[13] | 牛志红,宋晓飞,李晓丽,郭晓雨,何书强,贺栾劲芝,冯志红,孙成振,闫立英. 黄瓜单性结实性状遗传与QTL定位[J]. 中国农业科学, 2020, 53(1): 160-171. |
[14] | 亓飞,林姝,宋蒙飞,张孟茹,陈姝延,张乃心,陈劲枫,娄群峰. 黄瓜抗白粉病突变体筛选与鉴定[J]. 中国农业科学, 2020, 53(1): 172-182. |
[15] | 蔡和序,薄凯亮,周琪,苗晗,董邵云,顾兴芳,张圣平. 黄瓜幼苗下胚轴长度GWAS分析及候选基因挖掘[J]. 中国农业科学, 2020, 53(1): 122-132. |
|