中国农业科学 ›› 2022, Vol. 55 ›› Issue (24): 4851-4862.doi: 10.3864/j.issn.0578-1752.2022.24.006
收稿日期:
2022-07-18
接受日期:
2022-09-03
出版日期:
2022-12-16
发布日期:
2023-01-04
通讯作者:
陈景超
作者简介:
李志玲,E-mail:基金资助:
LI ZhiLing(),LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao()
Received:
2022-07-18
Accepted:
2022-09-03
Online:
2022-12-16
Published:
2023-01-04
Contact:
JingChao CHEN
摘要:
【目的】克隆牛筋草(Eleusine indica)中草甘膦的靶标基因EPSPS,获得牛筋草EPSPS重组蛋白并制备其单克隆及多克隆抗体,组装酶联免疫试剂盒,检测牛筋草植株不同组织EPSPS的表达水平及蛋白含量,为快速鉴定抗性牛筋草提供简便工具。【方法】利用PCR方法克隆EPSPS基因全长;构建pET30a-EPSPS阳性质粒并转化宿主菌BL21,经IPTG诱导表达后获得重组蛋白;利用该重组蛋白免疫小鼠与新西兰大白兔,制备单克隆及多克隆抗体,并利用Western blot检测特异性;利用间接ELISA方法进行免疫配对试验,筛选出最佳配对抗体,优选各试剂工作浓度并组装试剂盒;用研制的试剂盒对不同种群牛筋草进行EPSPS含量检测,并与qPCR结果分析比较。【结果】牛筋草EPSPS的开放阅读框含有1 620 bp的核苷酸,编码540个氨基酸,理论等电点为8.80,该蛋白无跨膜区域。进化树分析结果表明牛筋草EPSPS与水稻EPSPS进化关系最近。诱导蛋白表达的培养条件为1 mmol·L-1的IPTG,25℃,获得了纯度大于90%,浓度为3 mg·mL-1的重组蛋白12 mg;编号为R1711和R1712的家兔免疫后产生的多克隆抗体有较高的效价,编号为M171070、M171071、M171072的小鼠产生的单克隆抗体效价较高。进一步筛选出单抗FL-374-08能与多克隆抗体组成最佳配对抗体;酶联免疫试剂盒包被抗体的最优质量工作浓度为2 μg·mL-1,酶标抗体的最优工作浓度为10 μg·mL-1;试剂盒线性检测范围为5—80 μg·kg-1,检出限为5 μg·kg-1。抗性牛筋草植株叶片中EPSPS的表达量是敏感植株的52.9倍,而茎中EPSPS的表达量是敏感植株的63.0倍。在抗性牛筋草叶片中EPSPS相对拷贝数是敏感植株的53.5倍,而茎中EPSPS的相对拷贝数是敏感植株的78.6倍。Western blot结果表明单抗与牛筋草EPSPS有特异性免疫,并能准确区分不同敏感性植株及不同组织的蛋白含量差异。酶联免疫检测结果发现抗性牛筋草茎中的EPSPS浓度可以达到6.0 μg·L-1,而敏感植株叶片和茎中EPSPS蛋白的浓度分别为0.22和0.43 μg·L-1。【结论】获得的牛筋草EPSPS单克隆抗体特异性强、灵敏度高,研发的EPSPS酶联免疫试剂盒能够快速、准确检测牛筋草EPSPS蛋白含量并鉴定牛筋草由EPSPS过量表达导致的草甘膦抗药性。
李志玲,李香菊,崔海兰,于海燕,陈景超. 牛筋草EPSPS酶联免疫试剂盒的研发及应用[J]. 中国农业科学, 2022, 55(24): 4851-4862.
LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica[J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
表1
本研究所用引物序列"
用途 Use | 引物名称 Primer name | 引物序列 Primer sequence (5′-3′) |
---|---|---|
克隆 Clone | EPSPS-F1 | ACCAACCGCAGCCAAACCAACC |
EPSPS-R1 | ACGTCGGCGCAGGCG | |
EPSPS-F2 | CGTGACCGCCGCTCG | |
EPSPS-R2 | TTAGTTCTTGACGAAAGTGCTG | |
表达量分析 Expression analysis | G2(目的基因Target gene)-F | GGTGGCAAGGTTAAGTTATCTGG |
G2-R | TCAACATAAGGGATGGAGATCAG | |
ALS(内参Reference)-F | GCAATTTCCCCAGTGACGACC | |
ALS-R | GCAAAAGCCTCTATCTTCCCTGT | |
相对拷贝数分析 Relative copy number analysis | ED-F | CTGATGGCTGCTCCTTTAGCTC |
ED-R | CCCAGCTATCAGAATGCTCTGC | |
ALS(内参Reference)-F | GCAATTTCCCCAGTGACGACC | |
ALS-R | GCAAAAGCCTCTATCTTCCCTGT |
表4
单抗与多抗的配对效果"
抗体编号 Antibody number | 效价 Titer | 阴性对照 Negative control | 重组蛋白 Recombinant protein | 阳性样本 Positive sample | 阴性样本 Negative sample |
---|---|---|---|---|---|
FL-374-01 | 1﹕100 | 0.1515 | 0.4524 | 0.1760 | 0.1417 |
FL-374-02 | 1﹕64K | 0.1360 | 0.7681 | 0.7709 | 0.1614 |
FL-374-03 | 1﹕16K | 0.1420 | 0.4806 | 0.3578 | 0.1321 |
FL-374-04 | 1﹕100 | 0.1322 | 0.5531 | 0.4250 | 0.1430 |
FL-374-05 | 1﹕256K | 0.1309 | 0.3783 | 0.1352 | 0.1192 |
FL-374-06 | 1﹕256K | 0.1221 | 0.4887 | 0.1345 | 0.1193 |
FL-374-07 | 1﹕1024K | 0.1452 | 0.2869 | 0.1847 | 0.1290 |
FL-374-08 | >1﹕1024K | 0.1352 | 1.9016 | 1.5229 | 0.3065 |
FL-374-09 | >1﹕1024K | 0.1062 | 0.2559 | 0.2138 | 0.1429 |
FL-374-10 | 1﹕1024K | 0.1102 | 0.2275 | 0.2050 | 0.1321 |
FL-374-11 | >1﹕1024K | 0.0870 | 0.4112 | 0.8804 | 0.1274 |
FL-374-12 | >1﹕1024K | 0.1037 | 0.2789 | 0.1690 | 0.1243 |
FL-374-13 | >1﹕1024K | 0.1015 | 0.2526 | 0.1591 | 0.1313 |
FL-374-14 | 1﹕1024K | 0.0899 | 0.7826 | 0.5128 | 0.1306 |
FL-374-15 | >1﹕1024K | 0.0915 | 0.2666 | 0.1327 | 0.1160 |
FL-374-16 | >1﹕1024K | 0.0983 | 0.7068 | 0.6413 | 0.1355 |
FL-374-17 | >1﹕1024K | 0.1234 | 0.9342 | 1.3048 | 0.1977 |
FL-374-18 | >1﹕1024K | 0.1325 | 1.0463 | 3.4774 | 0.1905 |
FL-374-19 | 1﹕1024K | 0.1102 | 0.2404 | 0.2307 | 0.1888 |
FL-374-20 | >1﹕1024K | 0.1519 | 1.6530 | 2.8649 | 0.6717 |
FL-374-21 | 1﹕256K | 0.1215 | 0.8766 | 0.3307 | 0.1901 |
FL-374-22 | 1﹕1024K | 0.1002 | 0.7049 | 0.8621 | 0.1706 |
FL-374-23 | >1﹕1024K | 0.1005 | 0.3511 | 0.9440 | 0.1478 |
FL-374-24 | >1﹕1024K | 0.1097 | 0.3207 | 0.2603 | 0.1486 |
FL-374-25 | >1﹕1024K | 0.1117 | 0.7694 | 0.2337 | 0.1512 |
FL-374-26 | 1﹕1024K | 0.1062 | 1.3339 | 0.8813 | 0.5641 |
FL-374-27 | >1﹕1024K | 0.1311 | 1.4462 | 1.8647 | 0.5575 |
FL-374-28 | 1﹕1K | 0.1269 | 0.9628 | 0.2446 | 0.1296 |
FL-374-29 | >1﹕1024K | 0.1291 | 0.9716 | 3.3775 | 0.4059 |
FL-374-30 | 1﹕1024K | 0.1103 | 0.2361 | 0.3440 | 0.1240 |
FL-374-31 | 1﹕1024K | 0.1077 | 0.3452 | 0.1224 | 0.1021 |
FL-374-32 | 1﹕1024K | 0.0947 | 0.1878 | 0.1064 | 0.1033 |
FL-374-33 | >1﹕256K | 0.1017 | 0.1915 | 0.1317 | 0.1059 |
FL-374-34 | 1﹕1024K | 0.1101 | 0.2415 | 0.1281 | 0.1101 |
FL-374-35 | >1﹕1024K | 0.0993 | 0.1928 | 0.1402 | 0.1118 |
[1] | HOLM L, PLUCKNETT D L, PANCHO J V, HERBERGER J P. The World’s Worst Weeds. Distribution and Biology. Hawaii USA: The University Press of Hawaii, Honolulu, 1977. |
[2] | LEE L J, NGIM J. A first report of glyphosate-resistant goosegrass (Eleusine indica (L) Gaertn) in Malaysia. Pest Management Science, 2000, 56(4): 336-339. |
[3] | 李扬汉. 中国杂草志. 北京: 中国农业出版社, 1998. |
LI Y H. Annals of Weeds in China. Beijing: China Agriculture Press, 1998. (in Chinese) | |
[4] |
CHEN J, WEI S, HUANG H, CUI H, ZHANG C, LI X. Characterization of glyphosate and quizalofop-p-ethyl multiple resistance in Eleusine indica. Pesticide Biochemistry and Physiology, 2021, 176: 104862.
doi: 10.1016/j.pestbp.2021.104862 |
[5] |
DUKE S O, POWLES S B. Glyphosate: A once-in-a-century herbicide. Pest Management Science, 2008, 64(4): 319-325.
doi: 10.1002/ps.1518 pmid: 18273882 |
[6] |
SAMMONS R D, GAINES T A. Glyphosate resistance: State of knowledge. Pest Management Science, 2014, 70(9): 1367-1377.
pmid: 25180399 |
[7] |
PRESTON C, WAKELIN A M. Resistance to glyphosate from altered herbicide translocation patterns. Pest Management Science, 2008, 64(4): 372-376.
pmid: 18080284 |
[8] | 李海燕, 于康震, 辛晓光, 秦运安, 李雁冰, 张晶. 禽流感间接ELISA诊断试剂盒的研制及应用. 中国预防兽医学报, 2001, 23(5): 372-376. |
LI H Y, YU K Z, XIN X G, QIN Y A, LI Y B, ZHANG J. Development and validation of indirect enzyme-linked immunosorbent assay test kit for detecting anti-influenza virus antibodies. Chinese Journal of Preventive Veterinary Medicine, 2001, 23(5): 372-376. (in Chinese) | |
[9] | 张也, 刘以祥. 酶联免疫技术与食品安全快速检测. 食品科学, 2003, 24(8): 200-204. |
ZHANG Y, LIU Y X. Rapid determination of enzyme-linked immunosorbent assay on food safety. Food Science, 2003, 24(8): 200-204. (in Chinese) | |
[10] | 杨柳, 任春梅, 缪倩, 陆芳, 程兆榜. 黄瓜绿斑驳花叶病毒的双抗夹心ELISA检测. 江苏农业学报, 2018, 34(4): 769-774. |
YANG L, REN C M, MIAO Q, LU F, CHENG Z B. DAS-ELISA detection against cucumber green mottle mosaic virus. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 769-774. (in Chinese) | |
[11] | 谭永安, 赵旭东, 姜义平, 赵静, 肖留斌, 郝德君. 绿盲蝽雷帕霉素靶蛋白的克隆、抗体制备及在蜕皮激素诱导下的应答. 中国农业科学, 2021, 54(10): 2118-2131. |
TAN Y A, ZHAO X D, JIANG Y P, ZHAO J, XIAO L B, HAO D J. Cloning, preparation of antibody and response induced by 20- hydroxyecdysone of target of rapamycin in Apolyqus lucorum. Scientia Agricultura Sinica, 2021, 54(10): 2118-2131. (in Chinese) | |
[12] | 梁雨欣, 吴建祥, 李小宇, 张春雨, 侯吉超, 周雪平, 王永志. 马铃薯Y病毒衣壳蛋白抗原表位分析及其快速ELISA检测方法的建立. 中国农业科学, 2021, 54(6): 1154-1162. |
LIANG Y X, WU J X, LI X Y, ZHANG C Y, HOU J C, ZHOU X P, WANG Y Z. Mapping of epitopes and establishment of rapid DAS-ELISA for potato virus Y coat protein. Scientia Agricultura Sinica, 2021, 54(6): 1154-1162. (in Chinese) | |
[13] | 陈景超, 张朝贤, 黄红娟, 魏守辉. 抗草甘膦杂草及其检测方法发展现状. 植物保护, 2011, 37(6): 44-47, 54. |
CHEN J C, ZHANG C X, HUANG H J, WEI S H. Advances in research on glyphosate-resistant weeds and the detection methods. Plant Protection, 2011, 37(6): 44-47, 54. (in Chinese) | |
[14] |
CHEN J, HUANG H, WEI S, CUI H, LI X, ZHANG C. Glyphosate resistance in Eleusine indica: EPSPS overexpression and P106A mutation evolved in the same individuals. Pesticide Biochemistry and Physiology, 2020, 164: 203-208.
doi: 10.1016/j.pestbp.2020.01.014 |
[15] | 高凯. NJ进化树构建方法的改进及其应用[D]. 北京: 北京工业大学, 2008. |
GAO K. Improvement and application of neighbor-joining method for phylogenetic tree reconstruction[D]. Beijing: Beijing University of Technology, 2008. (in Chinese) | |
[16] | 余舜武, 刘鸿艳, 罗利军. 利用不同实时定量PCR方法分析相对基因表达差异. 作物学报, 2007, 33(7): 1214-1218. |
YU S W, LIU H Y, LUO L J. Analysis of relative gene expression using different real-time quantitative PCR. Acta Agronomica Sinica, 2007, 33(7): 1214-1218. (in Chinese) | |
[17] |
BUSTIN S A, BENES V, GARSON J A, HELLEMANS J, HUGGETT J, KUBISTA M, MUELLER R, NOLAN T, PFAFFL M W, SHIPLEY G L, VANDESOMPELE J, WITTWER C T. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 2009, 55(4): 611-622.
doi: 10.1373/clinchem.2008.112797 pmid: 19246619 |
[18] |
GRUYS K J, WALKER M C, SIKORSKI J A. Substrate synergism and the steady-state kinetic reaction mechanism for EPSP synthase from Escherichia coli. Biochemistry, 1992, 31(24): 5534-5544.
doi: 10.1021/bi00139a016 |
[19] |
巩元勇, 郭书巧, 束红梅, 倪万潮, 帕尔哈提·买买提, 沈新莲, 徐鹏, 张香桂, 郭琪. 植物莽草酸途径EPSPS蛋白的分子进化和基因结构分析. 植物学报, 2015, 50(3): 295-309.
doi: 10.3724/SP.J.1259.2015.00295 |
GONG Y Y, GUO S Q, SHU H M, NI W C, PAERHATI M M T, SHEN X L, XU P, ZHANG X G, GUO Q. Analysis of molecular evolution and gene structure of EPSPS protein in plant shikimate pathway. Chinese Bulletin of Botany, 2015, 50(3): 295-309. (in Chinese)
doi: 10.3724/SP.J.1259.2015.00295 |
|
[20] | 陈颖芳, 周安琪, 朱宏波. 甘薯草甘膦抗性基因EPSPS克隆和序列分析. 西北植物学报, 2020, 40(1): 35-42. |
CHEN Y F, ZHOU A Q, ZHU H B. Cloning and expression analysis of glyphosate resistance gene EPSPS in sweet potato. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(1): 35-42. (in Chinese) | |
[21] | 常恒祯, 常江, 战俊澎, 杨馨, 郭珣, 刘益辛, 邹德颖, 任洪林. 包涵体重组蛋白不同纯化方法的比较. 中国生物制品学杂志, 2021, 34(7): 862-867. |
CHANG H Z, CHANG J, ZHAN J P, YANG X, GUO X, LIU Y X, ZOU D Y, REN H L. Comparison of various methods for purification of recombinant inclusion body protein. Chinese Journal of Biologicals, 2021, 34(7): 862-867. (in Chinese) | |
[22] | 金元昌, 刘利, 苏晓艳, 李景鹏, 李会东, 周建红. IPTG诱导浓度、时间及温度对重组促性腺激素释放激素基因表达的影响. 黑龙江畜牧兽医, 2006(8): 17-19. |
JIN Y C, LIU L, SU X Y, LI J P, LI H D, ZHOU J H. Effect of induce concentration, time and temperature of IPTG on the expression of the GST-GnRH/TRS gene. Heilongjiang Animal Science and Veterinary Medicine, 2006(8): 17-19. (in Chinese) | |
[23] | 黄兆峰, 白薇薇, 周欣欣, 黄红娟, 姜翠兰, 张朝贤, 魏守辉. 田旋花EPSPS基因表达特征及草甘膦对其表达的影响. 植物保护, 2019, 45(4): 104-107. |
HUANG Z F, BAI W W, ZHOU X X, HUANG H J, JIANG C L, ZHANG C X, WEI S H. Expression pattern of EPSPS gene and the effect of glyphosate on its expression in field bindweed. Plant Protection, 2019, 45(4): 104-107. (in Chinese) | |
[24] | 刘峰, 王天康, 吴立威, 阮盈盈. 黄瓜EPSPS基因的克隆及其组织特异性表达分析. 分子植物育种, 2022, 20(3): 750-755. |
LIU F, WANG T K, WU L W, RUAN Y Y. Cloning and expression analysis of EPSPS gene from cucumber. Molecular Plant Breeding, 2022, 20(3): 750-755. (in Chinese) | |
[25] | CHEN J, CUI H, MA X, MA Y, LI X. Distribution differences in the EPSPS gene in chromosomes between glyphosate-resistant and glyphosate-susceptible goosegrass (Eleusine indica). Weed Science, 2020, 68(1): 33-40. |
[26] |
ZHANG C, FENG L, TIAN X S. Alterations in the 5′ untranslated region of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene influence EPSPS overexpression in glyphosate-resistant Eleusine indica. Pest Management Science, 2018, 74(11): 2561-2568.
doi: 10.1002/ps.5042 |
[27] |
GHEREKHLOO J, FERNANDEZ-MORENO P T, ALCANTARA-DE LA CRUZ R, SANCHEZ-GONZALEZ E, CRUZ-HIPOLITO H E, DOMINGUEZ-VALENZUELA J A, DE PRADO R. Pro-106-Ser mutation and EPSPS overexpression acting together simultaneously in glyphosate-resistant goosegrass (Eleusine indica). Scientific Reports, 2017, 7(1): 6702.
doi: 10.1038/s41598-017-06772-1 pmid: 28751654 |
[28] |
BECKIE H J, ASHWORTH M B, FLOWER K C. Herbicide resistance management: Recent developments and trends. Plants, 2019, 8(6): 161.
doi: 10.3390/plants8060161 |
[29] |
CAO J, WU Q, WAN F, GUO J, WANG R. Reliable and rapid identification of glyphosate-resistance in the invasive weed Amaranthus palmeri in China. Pest Management Science, 2022, 78(6): 2173-2182.
doi: 10.1002/ps.6843 |
[30] |
CORBETT C A, TARDIF F J. Detection of resistance to acetolactate synthase inhibitors in weeds with emphasis on DNA-based techniques: A review. Pest Management Science, 2006, 62(7): 584-597.
doi: 10.1002/ps.1219 |
[31] |
READE J P, COBB A H. New, quick tests for herbicide resistance in black-grass (Alopecurus myosuroides Huds) based on increased glutathione S-transferase activity and abundance. Pest Management Science, 2002, 58(1): 26-32.
doi: 10.1002/ps.411 |
[32] | 赵静, 李志铭, 鲁力群, 贾鹏, 杨焕波, 兰玉彬. 基于无人机多光谱遥感图像的玉米田间杂草识别. 中国农业科学, 2020, 53(8): 1545-1555. |
ZHAO J, LI Z M, LU L Q, JIA P, YANG H B, LAN Y B. Weed identification in maize field based on multi-spectral remote sensing of unmanned aerial vehicle. Scientia Agricultura Sinica, 2020, 53(8): 1545-1555. (in Chinese) |
[1] | 王帅宇,张子腾,谢爱婷,董杰,杨建国,张爱环. 我国草地贪夜蛾种群杀虫剂靶标基因突变分析[J]. 中国农业科学, 2022, 55(20): 3948-3959. |
[2] | 张睿,张学尧,赵小明,马恩波,张建珍. 飞蝗表皮蛋白LmKnk3-5′的抗体制备及组织定位[J]. 中国农业科学, 2022, 55(2): 329-338. |
[3] | 张冯禧,肖琦,朱家平,尹力鸿,赵霞玲,严明帅,徐晋花,温立斌,牛家强,何孔旺. 非洲猪瘟病毒P30蛋白单克隆抗体制备、鉴定及阻断ELISA方法的建立[J]. 中国农业科学, 2022, 55(16): 3256-3266. |
[4] | 魏天,王成宇,王凤杰,李忠鹏,张芳毓,张守峰,扈荣良,吕礼良,王永志. 非洲猪瘟病毒p30蛋白单克隆抗体制备及线性抗原表位定位[J]. 中国农业科学, 2022, 55(15): 3062-3070. |
[5] | 尹飞,李振宇,SAMINA Shabbir,林庆胜. P450基因在氯虫苯甲酰胺不同抗性品系小菜蛾中的表达及功能分析[J]. 中国农业科学, 2022, 55(13): 2562-2571. |
[6] | 郭永春, 王鹏杰, 金珊, 侯炳豪, 王淑燕, 赵峰, 叶乃兴. 基于WGCNA鉴定茶树响应草甘膦相关的基因共表达模块[J]. 中国农业科学, 2022, 55(1): 152-166. |
[7] | 段玉,许建建,马志敏,宾羽,周常勇,宋震. 柑橘叶斑驳病毒的逆转录重组酶聚合酶扩增检测[J]. 中国农业科学, 2021, 54(9): 1904-1912. |
[8] | 梁雨欣,吴建祥,李小宇,张春雨,侯吉超,周雪平,王永志. 马铃薯Y病毒衣壳蛋白抗原表位分析及其快速ELISA检测方法的建立[J]. 中国农业科学, 2021, 54(6): 1154-1162. |
[9] | 李敏雪,李剑男,周红,肖宁,蔺辉星,马喆,范红结. 基于SodC单克隆抗体的胞内劳森菌IPMA抗原检测方法的建立及应用[J]. 中国农业科学, 2021, 54(20): 4478-4486. |
[10] | 马志敏,许建建,段玉,王春庆,苏越,张琦,宾羽,周常勇,宋震. 柑橘黄化脉明病毒RT-RPA检测方法的建立[J]. 中国农业科学, 2021, 54(15): 3241-3249. |
[11] | 石鑫,李莎,王志敏,付开赟,付文君,姜卫华. 新疆马铃薯甲虫对噻虫嗪的抗性监测及其细胞色素P450基因表达分析[J]. 中国农业科学, 2021, 54(14): 3004-3016. |
[12] | 惠媛媛,彭海帅,王毕妮,张富新,刘玉芳,贾蓉,任荣. 基于适配体的光学和电化学法对食源性致病菌检测的研究进展[J]. 中国农业科学, 2021, 54(11): 2419-2433. |
[13] | 谭永安,赵旭东,姜义平,赵静,肖留斌,郝德君. 绿盲蝽雷帕霉素靶蛋白的克隆、抗体制备及在蜕皮激素诱导下的应答[J]. 中国农业科学, 2021, 54(10): 2118-2131. |
[14] | 魏晓,张奇,张文,李慧,李培武. 农产品中黄曲霉毒素产毒菌标识性分子大容量反应体系 提高ELISA灵敏度[J]. 中国农业科学, 2020, 53(7): 1473-1481. |
[15] | 于惠林,贾芳,全宗华,崔海兰,李香菊. 施用草甘膦对转基因抗除草剂大豆田杂草防除、大豆安全性及杂草发生的影响[J]. 中国农业科学, 2020, 53(6): 1166-1177. |
|