中国农业科学 ›› 2018, Vol. 51 ›› Issue (23): 4485-4495.doi: 10.3864/j.issn.0578-1752.2018.23.008
收稿日期:
2018-03-19
接受日期:
2018-09-11
出版日期:
2018-12-01
发布日期:
2018-12-12
基金资助:
HOU JianWei(),XING CunFang(
),LU ZhiHong,CHEN Fen,YU Gao
Received:
2018-03-19
Accepted:
2018-09-11
Online:
2018-12-01
Published:
2018-12-12
摘要:
【目的】表征不同生物炭处理的黄壤细菌群落结构特征和组成差异,探讨引起黄壤细菌群落变化的主控环境因子,为土壤改良和秸秆资源的合理利用提供理论参考。【方法】以玉米、水稻和油菜秸秆500℃炭化得到的生物炭为添加材料,以贵州省地带性黄壤为供试土壤,通过室内培育试验,采用高通量测序(Illumina HiSeq)技术,研究不同生物炭处理的黄壤细菌的菌群变化,并对细菌群落结构与环境因子进行相关性分析和因子分析。试验共设4个处理:对照(CK)、添加玉米秸秆生物炭(BC1)、水稻秸秆生物炭(BC2)和油菜秸秆生物炭(BC3)。【结果】细菌16S rRNA基因拷贝数与土壤全氮、pH和全碳呈极显著或显著正相关关系(r分别为0.78**、0.62*和0.66*)。施用生物炭增加了细菌门和纲水平上的优势菌群的丰富度和多样性,且与pH和C/N具有较强的正相关性。Actinobacteria(放线菌门)、Cyanobacteria(蓝藻菌门)和Chloroflexi(绿弯菌门)为黄壤的3大优势菌门,占所有菌门的68.5%。因子分析显示,土壤全氮、C/N、pH、有效磷和阳离子交换量(CEC)总共解释了80.8%的群落变化,成为黄壤细菌群落结构变化的主控环境因子,贡献率依次为:土壤C/N>pH>有效磷>全氮>CEC。【结论】生物炭改变了细菌的群落构成和化学性质,土壤全氮、C/N、pH、有效磷和CEC对细菌群落结构变化贡献较大,其中全氮和pH是提高土壤细菌群落多样性和丰富度的主控环境因子。
侯建伟,邢存芳,卢志宏,陈芬,余高. 不同秸秆生物炭对贵州黄壤细菌群落的影响[J]. 中国农业科学, 2018, 51(23): 4485-4495.
HOU JianWei,XING CunFang,LU ZhiHong,CHEN Fen,YU Gao. Effects of the Different Crop Straw Biochars on Soil Bacterial Community of Yellow Soil in Guizhou[J]. Scientia Agricultura Sinica, 2018, 51(23): 4485-4495.
表1
供试土壤和生物炭的理化性质"
变量 Variables | 生物炭种类Biochar categories | 土壤 Soil | ||
---|---|---|---|---|
玉米秸秆生物炭 Corn straw biochar | 水稻秸秆生物炭 Rice straw biochar | 油菜秸秆生物炭 Rape straw biochar | ||
pH | 8.23 | 9.59 | 9.55 | 4.60 |
比表面积Surface area (m2·g-1) | 160.2 | 35.8 | 0.88 | / |
总孔容积Total pore volume (mL·g-1) | 0.331 | 0.068 | 1.69 | / |
平均孔径Pore diameter (nm) | 2.42 | 30.1 | 5.85 | / |
全碳Total C (g·kg-1) | 534.5 | 248.6 | 521.7 | 5.82 |
全氮Total N (g·kg-1) | 10.51 | 8.92 | 8.53 | 0.65 |
有效磷Available P (g·kg-1) | 3.99 | 4.34 | 3.75 | 0.001 |
有效钾Available K (g·kg-1) | 15.34 | 16.07 | 14.32 | 0.09 |
表2
黄壤化学性质及其与细菌16s rRNA基因拷贝数的相关性分析"
变量 Variables | 处理Treatment | 相关系数 Correlation coefficient | |||
---|---|---|---|---|---|
CK | BC1 | BC2 | BC3 | ||
pH | 4.60±0.22c | 5.68±0.03b | 5.67±0.07b | 5.81±0.08a | 0.62* |
全碳Total C (g·kg-1) | 5.82±0.31d | 13.58±0.80c | 14.04±1.32b | 17.49±0.99a | 0.66* |
全氮Total N (g·kg-1) | 0.65±0.08 | 0.85±0.06c | 0.96±0.02b | 1.07±0.01a | 0.78** |
全磷Total P (g·kg-1) | 0.17±0.02b | 0.20±0.01a | 0.18±0.01a | 0.19±0.01a | 0.36 |
全钾Total K (g·kg-1) | 22.19±1.06c | 23.23±0.52b | 23.84±0.62b | 24.08±1.22a | 0.44 |
碱解氮Available N (mg·kg-1) | 12.32±1.20d | 22.55±1.82a | 13.63±1.09b | 12.58±0.91c | 0.58 |
速效磷Available P (mg·kg-1) | 1.07±0.02d | 1.79±0.15a | 1.63±0.23b | 1.56±0.20c | 0.69 |
有效钾Available K(mg·kg-1) | 90.32±10.11d | 336.55±35.37b | 320.09±16.34c | 417.26±65.08a | 0.55 |
表3
16S rRNA基因OTU数、Read数、丰富度和多样性指数"
处理 Treatment | OTUs | Reads | 丰富度Richness | 多样性Diversity | |||
---|---|---|---|---|---|---|---|
Chao 1 | ACE | Shannon | Simpson | ||||
CK | 2621±145c | 54267±165a | 2122±115d | 2311±36c | 6.42±0.39c | 0.9023±0.002a | |
BC1 | 2994±117b | 53972±211a | 2376±126c | 2845±47a | 8.31±0.31b | 0.9386±0.005a | |
BC2 | 2832±195b | 54376±139a | 2678±72b | 2687±105b | 8.23±0.11b | 0.910±0.001a | |
BC3 | 3431±132a | 54511±97a | 2826±150a | 2926±76a | 8.68±0.23a | 0.908±0.003a |
表4
不同生物炭处理细菌纲水平的相对丰度(前10的菌纲)"
门 Phylum | 纲 Class | 处理 Treatment | |||
---|---|---|---|---|---|
CK | BC1 | BC2 | BC3 | ||
Cyanobacteria | Oscillatoriophycideae | 22.70±3.25b | 37.63±6.78a | 8.28±0.96c | 6.58±1.11d |
Actinobacteria | Actinobacteria | 25.22±1.92a | 8.55±0.87d | 11.01±2.01c | 18.57±0.97b |
Thermoleophilia | 7.21±1.30c | 9.04±1.22d | 13.85±0.98b | 18.43±2.54a | |
Firmicutes | Bacilli | 1.91±0.32b | 1.47±0.22b | 3.51±0.11a | 2.44±0.09b |
Proteobacteria | Alphaproteobacteria | 4.90±0.13b | 4.09±0.06c | 9.43±0.33a | 9.18±0.25a |
Gammaproteobacteria | 0.28±0.03c | 0.23±0.06c | 1.17±0.10a | 0.54±0.03b | |
Chloroflexi | Ellin6529 | 4.89±0.11b | 8.06±0.47a | 1.54±0.22d | 4.35±0.05c |
Chloroflexi | 3.36±0.18c | 7.02±0.44a | 1.27±0.08d | 4.13±0.33b | |
Anaerolineae | 5.12±0.31a | 2.10±0.09c | 1.44±0.24d | 3.55±0.11b | |
Thermomicrobia | 1.27±0.20c | 4.25±0.29a | 0.99±0.12d | 3.07±0.23b |
表5
土壤优势菌群(门水平)与土壤化学性质的相关性分析"
菌群Phylum | pH | C/N | 全氮 Total N | 有效磷 Available phosphorus | CEC |
---|---|---|---|---|---|
Actinobacteria | 0.458* | -0.159 | -0.230 | -0.496 | 0.136 |
Cyanobacteria | 0.592* | 0.492* | 0.192 | -0.376* | 0.278 |
Chloroflexi | 0.661** | 0.537* | 0.303 | -0.203 | -0.195 |
Proteobacteria | 0.436** | 0.622** | 0.721** | 0.441 | 0.318 |
Firmicutes | 0.613* | 0.486* | 0.117 | 0.369* | -0.255 |
Gemmatimonadetes | 0.695** | 0.335 | 0.316 | -0.579 | 0.194 |
Crenarchaeota | -0.139 | -0.257 | 0.089 | 0.572 | -0.148 |
Acidobacteria | 0.301 | 0.378* | 0.144 | -0.198* | 0.247* |
Armatimonadetes | 0.176 | 0.426 | 0.196 | -0.236 | 0.208 |
Bacteroidetes | -0.314 | 0.344* | 0.372* | 0.299 | -0.119 |
[1] |
曾希柏 . 红壤酸化及其防治. 土壤通报., 2000,31(3):111-113.
doi: 10.3321/j.issn:0564-3945.2000.03.005 |
ZENG X B . Red soil acidification and its prevention and cure. Chinese Journal of Soil Science, 2000,31(3):111-113. (in Chinese)
doi: 10.3321/j.issn:0564-3945.2000.03.005 |
|
[2] | 张文安, 徐大地, 肖厚军 . 磷石膏改良贵州黄壤及其应用前景. 贵州农业科学., 2002,30(2):61-63. |
ZHANG W A, XU D D, XIAO H J . Yellow soil improvement by using phosphorous gypsum and its prospects. Guizhou Agricultural Sciences, 2002,30(2):61-63. (in Chinese) | |
[3] |
TRYON E H . Effect of charcoal on certain physic, chemical, and biological properties of forest soils. Ecological Monographs., 1998,18(3):81-115.
doi: 10.2307/1948629 |
[4] | ZIMMERMAN A R . Abiotic and microbial oxidation of laboratory- produced black carbon (biochar). Environmental Science & Technology., 2010,44(5):1295-1301. |
[5] | WOOLF D, AMONETTE J E , STREET-PERROTT F A, LEHMANN J, JOSEPH S. Sustainable biochar to mitigate global climate change. Nature Communications., 2010,1(2):56. |
[6] |
XIE Z, XU Y, LIU G, Qi L, ZHU J G, TU C, JAMES E, AMONETTE J E, CADISCH G, YONG J W H, HU S J . Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China. Plant and Soil., 2013,370(1/2):527-540.
doi: 10.1007/s11104-013-1636-x |
[7] |
ZHAO X, WANG S Q, XING G X . Nitrification, acidification, and nitrogen leaching from subtropical cropland soils as affected by rice straw-based biochar: laboratory incubation and column leaching studies. Journal of Soils and Sediments., 2014,14(3):471-482.
doi: 10.1007/s11368-013-0803-2 |
[8] | 周桂玉, 窦森, 刘世杰 . 生物质炭结构性质及其对土壤有效养分和腐殖质组成的影响. 农业环境科学学报., 2011,30(10):2075-2080. |
ZHOU G Y, DOU S, LIU S J . The structural characteristics of biochar and its effects on soil available nutrients and humus composition. Journal of Agro-Environment Science, 2011,30(10):2075-2080. (in Chinese) | |
[9] |
张晗芝, 黄云, 刘钢, 许燕萍, 刘金山, 卑其诚, 蔺兴武, 朱建国, 谢祖彬 . 生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响. 生态环境学报., 2010,19(11):2713-2717.
doi: 10.3969/j.issn.1674-5906.2010.11.034 |
ZHANG H Z, HUANG Y, LIU G, XU Y P, LIU J S, BEI Q C, LIN X W, ZHU J G, XIE Z B . Effects of biochar on corn growth, nutrient uptake and soil chemical properties in seeding stage. Ecology and Environmental Sciences, 2010,19(11):2713-2717. (in Chinese)
doi: 10.3969/j.issn.1674-5906.2010.11.034 |
|
[10] |
YUAN J H, XU R K, ZHANG H . The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology., 2011,102(3):3488-3497.
doi: 10.1016/j.biortech.2010.11.018 pmid: 21112777 |
[11] | GOLDBERG. Black Carbon in the Environment: Properties and Distribution. New York: John Wiley, 1985. |
[12] |
LEHMANN J, RILLIG M C, THIES J, MASIELLO C A, HOCKADAY W C, CROWLEY D . Biochar effects on soil biota-A review. Soil Biology & Biochemistry., 2011,43(9):1812-1836.
doi: 10.1016/j.soilbio.2011.04.022 |
[13] |
KOLB S E, FERMANICH K J, DORNBUSH M E . Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Science Society of America Journal., 2009,73(4):1173-1181.
doi: 10.2136/sssaj2008.0232 |
[14] |
STEINBEISS S, GLEIXNER G, ANTONIETTI M . Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry., 2009,41(6):1301-1310.
doi: 10.1016/j.soilbio.2009.03.016 |
[15] | 郭文, 熊康宁, 张锦华, 杨苏茂, 刘凯旋, 许留兴 . 饲用灌木资源开发利用研究现状及其对贵州石漠化地区的启示. 中国农业科技导报., 2017,19(7):108-116. |
GUO W, XIONG K N, ZHANG J H, YANG S M, LIU K X, XU L X . Research status of forage shrub resources utilization and enlightenment for rocky desertification area in Guizhou province. Journal of Agricultural Science and Technology, 2017,19(7):108-116. (in Chinese) | |
[16] |
张雅蓉, 李渝, 蒋太明, 张文安 . 贵州主要农作物秸秆资源分布及综合利用现状. 贵州农业科学., 2015,43(8):262-267.
doi: 10.3969/j.issn.1001-3601.2015.08.064 |
ZHANG Y R, LI Y, JIANG T M, ZHANG W A . Distribution and comprehensive utilization of straw resources of main crops in Guizhou. Guizhou Agricultural Sciences, 2015,43(8):262-267. (in Chinese)
doi: 10.3969/j.issn.1001-3601.2015.08.064 |
|
[17] |
PACE N R . Problems with “Procaryote”. Journal of Bacteriology., 2009,191(7):2008-2010.
doi: 10.1128/JB.01224-08 |
[18] | 张伟明 . 生物炭的理化性质及其在作物生产上的应用.[D]. 辽宁: 沈阳农业大学, 2012. |
ZHANG W M . Physical and chemical properties of biochar and its application in crop production.[D]. Liaoning: Shenyang Agricultural University, 2012. ( in Chinese) | |
[19] | 鲍士旦 . 土壤农化分析. 北京: 中国农业科技出版社, 2000. |
BAO S D. The Method of Analysis for Soil Agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000. ( in Chinese) | |
[20] |
王佩雯, 朱金峰, 陈征, 许自成, 武劲草, 常安然 . 高通量测序技术下连作植烟土壤细菌群落与土壤环境因子的耦合分析. 农业生物技术学报., 2016,24(11):1754-1763.
doi: 10.3969/j.issn.1674-7968.2016.11.013 |
WANG P W, ZHU J F, CHEN Z, XU Z C, WU J C, CHANG A R . Coupling analysis based on high throughput sequencing technology of soil bacterial community and soil environmental factors in continuous cropping tobacco soil. Journal of Agricultural Biotechnology, 2016,24(11):1754-1763. (in Chinese)
doi: 10.3969/j.issn.1674-7968.2016.11.013 |
|
[21] |
陈心想, 耿增超, 王森, 赵宏飞 . 施用生物炭后塿土土壤微生物及酶活性变化特征. 农业环境科学学报., 2014,33(4):751-758.
doi: 10.11654/jaes.2014.04.019 |
CHEN X X, GENG Z C, WANG S, ZHAO H F . Effects of biochar amendment on microbial biomass and enzyme activities in loess soil. Journal of Agro-Environment Science, 2014,33(4):751-758. (in Chinese)
doi: 10.11654/jaes.2014.04.019 |
|
[22] |
陈伟, 周波, 束怀瑞 . 生物炭和有机肥处理对平邑甜茶根系和土壤微生物群落功能多样性的影响. 中国农业科学., 2013,46(18):3850-3856.
doi: 10.3864/j.issn.0578-1752.2013.18.014 |
CHEN W, ZHOU B, SHU H R . Effects of organic fertilizer and biochar on root system and microbial functional diversity of Malus hupehensis Rehdv. Scientia Agricultura Sinica, 2013,46(18):3850-3856. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.18.014 |
|
[23] |
DEMPSTER D N, GLEESON D B, SOLAIMAN Z M, JONES D L, MURPHY D V . Decreased soil microbial biomass and nitrogen mineralisation with eucalyptus biochar addition to a coarse textured soil. Plant and Soil., 2012,354(1/2):311-324.
doi: 10.1007/s11104-011-1067-5 |
[24] | 李明, 李忠佩, 刘明, 江春玉, 吴萌 . 不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响. 中国农业科学., 2015,48(7):1361-1369. |
LI M, LI Z P, LIU M, JIANG C Y, WU M . Effects of different straw biochar on nutrient and microbial community structure of a red paddy soil. Scientia Agricultura Sinica, 2015,48(7):1361-1369. (in Chinese) | |
[25] | 李松昊, 何冬华, 沈秋兰, 徐秋芳 . 竹炭对三叶草生长及土壤细菌群落的影响. 应用生态学报., 2014,25(8):2334-2340. |
LI S H, HE D H, SHEN Q L, XU Q F . Effect of bamboo charcoal on the growth of Trifolium repens and soil bacterial community structure. Chinese Journal of Applied Ecology, 2014,25(8):2334-2340. (in Chinese) | |
[26] |
武爱莲, 丁玉川, 焦晓燕, 王劲松, 董二伟, 郭珺, 王浩 . 玉米秸秆生物炭对褐土微生物功能多样性及细菌群落的影响. 中国生态农业学报., 2016,24(6):736-743.
doi: 10.13930/j.cnki.cjea.151212 |
WU A L, DING Y C, JIAO X Y, WANG J S, DONG E W, GUO J, WANG H . Effects of corn stover biochar on microbial functional diversity and the bacterial community in brown soil. Journal of Chinese Ecological Agriculture, 2016,24(6):736-743. (in Chinese)
doi: 10.13930/j.cnki.cjea.151212 |
|
[27] |
PIETIKAINEN J, KIIKKILA O, FRITZE H . Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos., 2000,89(5):231-242.
doi: 10.1034/j.1600-0706.2000.890203.x |
[28] | JIN H . Characterization of microbial life colonizing biochar and biochar-amended soils[D]. New York: Cornell University, Ithac., 2010. |
[29] |
MARRIS E . Putting the carbon back: Black is the new green. Nature., 2006,442(3):624-626.
doi: 10.1057/9780230105973 |
[30] |
KHODADAD C L M, ZIMMERMAN A R, GREEN S J, UTHANDI S, FOSTER J S . Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biology and Biochemistry., 2011,43(2):385-392.
doi: 10.1016/j.soilbio.2010.11.005 |
[31] | 尹昌, 范分良, 李兆君, 宋阿琳, 朱平, 彭畅, 梁永超 . 长期施用有机和无机肥对黑土 nir S型反硝化菌种群结构和丰度的影响. 环境科学., 2012,33(11):3967-3975. |
YIN C, FAN F L, LI Z J, SONG A L, ZHU P, PENG C, LIANG Y C . Influences of long-term application of organic and inorganic fertilizers on the composition and abundance of nir S-type denitrifiers in black soil. Environmental Science, 2012,33(11):3967-3975. (in Chinese) | |
[32] | 周之栋, 卜晓莉, 吴永波, 薛建辉 . 生物炭对土壤微生物特性影响研究进展. 南京林业大学学报(自然科学版)., 2016,40(6):1-8. |
ZHOU Z D, BU X L, WU Y B, XUE J H . The research progress on effect of biochar on soil microbial characteristics. Journal of Nanjing Forestry University (Natural Science Edition), 2016,40(6):1-8. (in Chinese) | |
[33] |
GLASER B . Manioc peel and charcoal:A potential organic amendment for sustainable soil fertility in the tropics. Soil Biology and Fertilizer., 2005,41(1):15-21.
doi: 10.1007/s00374-004-0804-9 |
[34] |
WARNOCK D D, LEHNLANN J, KUYPER T W . Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant and Soil., 2007,300(1/2):9-20.
doi: 10.1007/s11104-007-9391-5 |
[35] |
纪锐琳, 朱义年, 佟小薇, 张爱莉, 朱本富, 王敦球 . 竹炭包膜尿素在土壤中的氨挥发损失及其影响因素. 桂林工学院学报., 2008,28(1):113-118.
doi: 10.3969/j.issn.1674-9057.2008.01.024 |
JI R L, ZHU Y N, TONG X W, ZHANG A L, ZHU B F, WANG D Q . Ammonia volatilization of bamboo-charcoal coated urea in soil and affecting factors. Journal of Guilin University of Technology, 2008,28(1):113-118.
doi: 10.3969/j.issn.1674-9057.2008.01.024 |
|
[36] |
LIU J J, SUI Y Y, YU Z H, SHI Y, CHU H Y, JIN J, LIU X B, WANG G H . High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biology & Biochemistry., 2014,70(2):113-122.
doi: 10.1016/j.soilbio.2013.12.014 |
[37] |
高圣超, 关大伟, 马鸣超, 张伟, 李俊, 沈德龙 . 大豆连作条件下施肥对东北黑土细菌群落的影响. 中国农业科学., 2017,50(7):1271-1281.
doi: 10.3864/j.issn.0578-1752.2017.07.010 |
GAO S C, GUAN D W, MA M C, ZHANG W, LI J, SHEN D L . Effects of fertilization on bacterial community under the condition of continuous soybean monoculture in black soil in the northeast China. Scientia Agricultura Sinica, 2017,50(7):1271-1281. (in Chines)
doi: 10.3864/j.issn.0578-1752.2017.07.010 |
[1] | 秦贞涵,王琼,张乃于,金玉文,张淑香. 黑土有效磷阈值区间的磷形态特征及对土壤化学性质的响应[J]. 中国农业科学, 2022, 55(22): 4419-4432. |
[2] | 马雪萌,余成敏,赛小玲,刘贞,桑海洋,崔百明. PSORA:一种基于高通量测序的T-DNA插入位点分析方法[J]. 中国农业科学, 2022, 55(15): 2875-2882. |
[3] | 龚小雅,石记博,方凌,方亚鹏,吴凤芝. 淹水对辣椒连作土壤化学性质与微生物群落结构的影响[J]. 中国农业科学, 2022, 55(12): 2472-2484. |
[4] | 刘彦伶,李渝,张艳,张雅蓉,黄兴成,张萌,张文安,蒋太明. 长期施用磷肥和有机肥黄壤微生物量磷特征[J]. 中国农业科学, 2021, 54(6): 1188-1198. |
[5] | 杜宇,祝智威,王杰,王秀娜,蒋海宾,范元婵,范小雪,陈华枝,隆琦,蔡宗兵,熊翠玲,郑燕珍,付中民,陈大福,郭睿. 利用第三代纳米孔长读段测序技术构建和注释蜜蜂球囊菌的全长转录组[J]. 中国农业科学, 2021, 54(4): 864-876. |
[6] | 顾博文,杨劲峰,鲁晓玲,吴怡慧,李娜,刘宁,安宁,韩晓日. 连续施用生物炭对花生不同生育时期叶绿素荧光特性的影响[J]. 中国农业科学, 2021, 54(21): 4552-4561. |
[7] | 邵美琪,赵卫松,苏振贺,董丽红,郭庆港,马平. 盐胁迫下枯草芽孢杆菌NCD-2对番茄促生作用及对土壤微生物群落结构的影响[J]. 中国农业科学, 2021, 54(21): 4573-4584. |
[8] | 赵卫松,郭庆港,苏振贺,王培培,董丽红,胡卿,鹿秀云,张晓云,李社增,马平. 马铃薯健株与黄萎病株根际土壤真菌群落结构及其对碳源利用特征[J]. 中国农业科学, 2021, 54(2): 296-309. |
[9] | 黄子粤,刘文君,覃仁柳,庞师婵,肖健,杨尚东. 不同品种南瓜内生细菌多样性及PICRUSt基因功能预测分析[J]. 中国农业科学, 2021, 54(18): 4018-4032. |
[10] | 陈露露,王会,王吉坤,王嘉博,柴志欣,陈智华,钟金城. 藏黄牛与宣汉黄牛心脏miRNA表达谱比较[J]. 中国农业科学, 2020, 53(8): 1677-1687. |
[11] | 赵卫松,郭庆港,李社增,王培培,鹿秀云,苏振贺,张晓云,马平. 花铃期棉花黄萎病抗病与感病品种对 土壤细菌群落结构的影响[J]. 中国农业科学, 2020, 53(5): 942-954. |
[12] | 向伟,王雷,刘天奇,李诗豪,翟中兵,李成芳. 生物炭与无机氮配施对稻田温室气体排放及氮肥利用率的影响[J]. 中国农业科学, 2020, 53(22): 4634-4645. |
[13] | 董成,陈智勇,谢迎新,张阳阳,缑培欣,杨家蘅,马冬云,王晨阳,郭天财. 生物炭连续施用对农田土壤氮转化微生物及N2O排放的影响[J]. 中国农业科学, 2020, 53(19): 4024-4034. |
[14] | 赵欣周,张世春,李颖,郑益旻,赵洪亮,谢立勇. 辽河平原玉米田不同施肥下的土壤氨挥发特征[J]. 中国农业科学, 2020, 53(18): 3741-3751. |
[15] | 赵园园,李鹏飞,许勤智,安清明,孟金柱. 山羊卵泡发育相关基因的筛选及分析[J]. 中国农业科学, 2020, 53(17): 3597-3605. |
|