中国农业科学 ›› 2018, Vol. 51 ›› Issue (22): 4328-4338.doi: 10.3864/j.issn.0578-1752.2018.22.011
王玉奎1(),白晓璟1,廉小平2,张贺翠1,罗绍兰1,蒲敏1,左同鸿1,刘倩莹1,朱利泉1(
)
收稿日期:
2018-04-21
接受日期:
2018-07-21
出版日期:
2018-11-16
发布日期:
2018-11-16
基金资助:
WANG YuKui1(),BAI XiaoJing1,LIAN XiaoPing2,ZHANG HeCui1,LUO ShaoLan1,PU Min1,ZUO TongHong1,LIU QianYing1,ZHU LiQuan1(
)
Received:
2018-04-21
Accepted:
2018-07-21
Online:
2018-11-16
Published:
2018-11-16
摘要:
【目的】自交不亲和性(self-incompatibility,SI)是显花植物在长期进化过程中形成的限制自交衰退、促进杂交优势的一种复杂而完善的重要遗传机制。通过对SI与钙共响应新基因BoSPx的克隆、时空特异性表达分析和筛选与其互作的蛋白,并对BoSPx在自花授粉后刺激柱头的响应机制进行研究,以期为甘蓝SI的深入研究提供依据。【方法】采用转录组测序、自花和异花授粉后差异筛选以及PCR克隆获得BoSPx。利用DNAMAN软件和Smart软件进行氨基酸序列比对和保守结构域分析,通过Expasy在线软件预测BoSPx蛋白分子量、等电点、二级结构和跨膜结构域;采用MEGA6.0软件中的邻接法构建BoSPx蛋白的系统发育树,并推测BoSPx蛋白在甘蓝自花授粉后的功能。利用RT-PCR技术进行组织特异性表达分析,通过qRT-PCR检测自花和异花授粉后BoSPx的相对表达量。构建GFP表达载体,共聚焦显微镜观察BoSPx的亚细胞定位;酵母双杂交技术寻找其相互作用的蛋白。【结果】克隆获得一个新基因——BoSPx,其含有1个外显子,无内含子,是单外显子结构。BoSPx的开放阅读框为396 bp,编码具有131个氨基酸残基的蛋白质。理论等电点pI为4.54,是一种亲水性蛋白,没有信号肽和跨膜域,含有3个保守的EF-hand模体(第48—60、64—80和81—96位)。BoSPx起始密码子上游启动子序列500 bp左右含有生长素响应应答元件。BoSPx在开花前1—2 d的柱头、萼片、叶片、花药、花瓣中均有表达,在柱头中表达量最高,并且在自花和异花授粉的柱头中表达量都是先升高后降低,在自花授粉15 min时表达量达到最高,而后急剧下降,下降的低值与开花前1—2 d的柱头峰值相当。亚细胞定位分析表明BoSPx蛋白定位于细胞核和细胞质中。酵母双杂交结果表明BoSPx与SRK、ARC1之间无相互作用,但与生长素家族蛋白BoSAUR71和BoPID均能互作。【结论】BoSPx受自花授粉显著诱导表达,可能是受生长素调节的钙结合蛋白,对SI和钙产生共响应;该蛋白具有多组织表达和核质同在的特性,表明BoSPx可能参与SRK-ARC1-ExO70A1途径以外的未知信号通路。
王玉奎,白晓璟,廉小平,张贺翠,罗绍兰,蒲敏,左同鸿,刘倩莹,朱利泉. 甘蓝BoSPx的克隆与表达分析[J]. 中国农业科学, 2018, 51(22): 4328-4338.
WANG YuKui,BAI XiaoJing,LIAN XiaoPing,ZHANG HeCui,LUO ShaoLan,PU Min,ZUO TongHong,LIU QianYing,ZHU LiQuan. Cloning and Expression Analysis of BoSPx in Brassica oleracea[J]. Scientia Agricultura Sinica, 2018, 51(22): 4328-4338.
表1
BoSPx上游调控区顺式作用元件"
相关功能预测 Associated putative function | 启动子顺式作用元件 Cis-elements in the promoter region |
---|---|
脱落酸响应元件Abscisic acid responsiveness | ABRE |
光响应元件Light responsive element | ATCT-motif, Box4, G-Box, ACE, CATT-motif, GAG-motif Gap-box, TCCC-motif, I-box, MNF1, TCT- motif, as-2-box |
顺式作用调节元件Cis-acting regulatory element | ARE |
启动子和增强子区域Promoter and enhancer regions | CAAT-box |
热应激反应Heat stress responsiveness | HSE |
低温响应元件Low-temperature responsiveness | LTR |
干旱诱导反应元件Drought induced response element | MBS |
调控胚乳表达元件Regulatory element for endosperm expression | GCN4_motif, Skn-1_motif |
水杨酸响应元件Salicylic acid responsiveness | TCA-element |
茉莉酸响应元件MeJA-responsiveness | CGTCA-motif, TGACG-motif |
生长素响应元件Auxin-responsive element | TGA-element |
表2
质粒共转化酵母的相互作用分析"
编号 No. | 酵母菌种(质粒) Mating strain (plasmid) | 培养基 Yeast medium | 菌斑 Colony | 颜色 Color |
---|---|---|---|---|
1 | Y2HGold(pGADT7-T×pGBKT7-53) | SD/-Leu/-Trp | 是Yes | 白色White |
2 | Y2HGold(pGADT7-T×pGBKT7-Lam) | SD/-Leu/-Trp | 是Yes | 红色Red |
3 | Y2HGold (pGADT7-SRK×pGBKT7-BoSPx) | SD/-Leu/-Trp | 是Yes | 红色Red |
4 | Y2HGold (pGADT7-ARC1×pGBKT7-BoSPx) | SD/-Leu/-Trp | 是Yes | 红色Red |
5 | Y2HGold (pGADT7-SAUR71×pGBKT7-BoSPx) | SD/-Leu/-Trp | 是Yes | 白色White |
6 | Y2HGold (pGADT7-BoPID×pGBKT7-BoSPx) | SD/-Leu/-Trp | 是Yes | 白色White |
7 | Y2HGold(pGADT7-T×pGBKT7-53) | SD/-Ade/-His/-Leu/-Trp | 是Yes | 白色White |
8 | Y2HGold(pGADT7-T×pGBKT7-Lam) | SD/-Ade/-His/-Leu/-Trp | 是Yes | 红色Red |
9 | Y2HGold (pGADT7-SRK×pGBKT7-BoSPx) | SD/-Ade/-His/-Leu/-Trp | 无No | 无No |
10 | Y2HGold (pGADT7-ARC1×pGBKT7-BoSPx) | SD/-Ade/-His/-Leu/-Trp | 无No | 无No |
11 | Y2HGold (pGADT7-SAUR71×pGBKT7-BoSPx) | SD/-Ade/-His/-Leu/-Trp | 是Yes | 白色White |
12 | Y2HGold (pGADT7-BoPID×pGBKT7-BoSPx) | SD/-Ade/-His/-Leu/-Trp | 是Yes | 白色White |
[1] |
CHAPMAN L A, GORING D R . Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. Journal of Experimental Botany, 2010,61(7):1987-1999.
doi: 10.1093/jxb/erq021 pmid: 20181663 |
[2] |
GU T, MAZZURCO M, SULAMAN WAHEEDA SULAMAN, DINAH D . MATIAS and DAPHNE R.GORING. Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proceedings of the National Academy of Sciences of the USA, 1998,95(1):382-387.
doi: 10.1073/pnas.95.1.382 pmid: 9419384 |
[3] |
STONE S L, ANDERSON M, MULLEN R T, GORING D R . ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. The Plant Cell, 2003,15(4):885-898.
doi: 10.1105/tpc.009845 pmid: 12671085 |
[4] | VANOOSTHUYSE V, TICHTINSKY G, DUMAS C, GAUDE T, MARK C J . Interaction of calmodulin, a sorting nexin and kinase-associated protein phosphatase with the Brassica oleracea S locus receptor kinase. Plant Physiology, 2003,133(2):919-929. |
[5] | MIKHAIL E, NASRALL A H, LIU P, JUNE B . Generation of self-incompatible Arabidopsis thaliana by transfer of two S locus genes from A. lyrata. Science, 2002,297:247-249. |
[6] | NASRALLAH M E, LIU P, SHERMAN-BROYLES S, BOGGS N A, NASRALLAH J B . Natural variation in expression of self- incompatibility in Arabidopsis thaliana: Implications for the evolution of selfing. Proceedings of the National Academy of Sciences of the USA, 2004,101(45):16070-16074. |
[7] | JUNE B, NASRALL A H, MIKHAIL E . Robust self-incompatibility in the absence of a functional ARC1, gene in Arabidopsis thaliana. The Plant Cell, 2014,26:3838-3841. |
[8] | Allen A M, Hiscock S J . Evolution and phylogeny of self- incompatibility systems in angiosperms[M] //Self-Incompatibility in Flowering Plants. Springer, Berlin, Heidelberg, 2008: 73-101. |
[9] |
SAMUEL M A, GORING D R . Self pollen rejection through the intersection of two cellular pathways in the Brassicaceae: Self- incompatibility and the compatible pollen response. Self-Incompatibility in Flowering Plants, 2008: 173-191.
doi: 10.1007/978-3-540-68486-2_8 |
[10] |
SAMUEL M A, MUDGIL Y, SALT J N, DELMAS F, RAMACHANDRAN S, CHILELLI A, GORING D R . Interactions between the s-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. Plant Physiology, 2008,147:2084-2095.
doi: 10.1104/pp.108.123380 pmid: 18552232 |
[11] | IWANO M, ITO K, FUJII S, KAKITA M, ASANO-SHIMOSATO H, IGARASHI M, KAOTHIEN-NAKAYAMA P, ENTANI T, KANATANI A, TAKEHISA M, TANAKA M, KOMATSU K, SHIBA H, NAGAI T, MIYAWAKI A, ISOGAI A, TAKAYAMA S . Calcium signalling mediates self-incompatibility response in the Brassicaceae. Nature Plants, 2015,1(9):15128. |
[12] | ALONI R, ALONI E, LANGHANS M, ULLRICH C I . Role of auxin in regulatingArabidopsis flower development. Planta, 2006(223):315-328. |
[13] |
齐国辉, 徐继忠, 张玉星 . 鸭梨自交不亲和性与花柱内源激素关系的研究. 河北农业大学学报, 2007,30(1):31-34.
doi: 10.3969/j.issn.1000-1573.2007.01.008 |
QI G H, XU J Z, ZHANG Y X . Study on the relationship between self-incompatibility of Ya pear and endogenous hormones in style. Journal of Hebei Agricultural University, 2007,30(1):31-34. (in Chinese)
doi: 10.3969/j.issn.1000-1573.2007.01.008 |
|
[14] |
BAVRINA T V, MILYAEVA E L, MACHACCKOVA I . Effect of phytohormone biosynthesis genes (ipt and iaaM+ iaaH) on the sexual reproduction of transgenic tobacco plants. Russian Journal of Plant Physiology, 2002,49(4):484-491.
doi: 10.1023/A:1016355824539 |
[15] |
CHEN D, ZHAO J . Free IAA in stigmas and styles during pollen germination. Physiologia Plantarum, 2008,134:202-221.
doi: 10.1111/ppl.2008.134.issue-1 |
[16] |
KIM D, PERTEA G, TRAPNELL C, PIMENTEL H, KELLEY R, SALZBERG S L . TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 2013,14:R36.
doi: 10.1186/gb-2013-14-4-r36 |
[17] | LIAO X L, ZHU S F, ZHAO W J . Cloning, Sequencing of 16S rDNA of HLB and establishment of real time PCR method. Journal of Agricultural Biotechnology, 2004,12(1):80-85. |
[18] |
赵娟莹, 刘佳明, 冯志娟 . 大豆锌指转录因子GmDi19-5对高温的响应及互作蛋白的筛选. 中国农业科学, 2017,50(12):2389-2398.
doi: 10.3864/j.issn.0578-1752.2017.12.019 |
ZHAO J Y, LIU J M, FENG Z J . Response of soybean zinc fingerprinting factor GmDi19-5 to high temperature and screening of interaction proteins. Scientia Agricultura Sinica, 2017,50(12):2389-2398. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.12.019 |
|
[19] | 蒲敏, 罗绍兰, 廉小平, 张贺翠, 白晓璟, 王玉奎, 左同鸿, 高启国, 任雪松, 朱利泉 . 自花授粉诱导的甘蓝功能基因BoSPI的克隆与表达分析. 作物学报, 2018,44(2):177-184. |
PU M, LUO S L, LIAN X P, ZHANG H C, BAI X J, WANG Y K, ZUO T H, GAO Q G, REN X S, ZHU L Q . Cloning and expression analysis of bovine functional gene BoSPI induced by self-pollination. Acta Agronomica Sinica, 2018,44(2):177-184. (in Chinese) | |
[20] |
MARSDEN B J, SHAW G S, SYKES B D . Calcium binding proteins. elucidating the contributions to calcium affinity from an analysis of species variants and peptide fragments. Biochemistry and Cell Biology, 1990,68(3):587-601.
doi: 10.1139/o90-084 pmid: 2198059 |
[21] | 许俊强 . 甘蓝花粉管钙感受蛋白编码基因CML49的克隆及功能鉴定研究[D]. 重庆: 西南大学, 2014. |
XU J Q . Cloning and functional identification of calcium sensing protein encoding gene CML49 in Brassica oleracea pollen tube[D]. Chongqing: Southwest University, 2014. ( in Chinese) | |
[22] |
Marsden B J, Shaw G S, Sykes B D . Calcium binding proteins. Elucidating the contributions to calcium affinity from an analysis of species variants and peptide fragments. Biochemistry and Cell Biology, 1990,68(3):587-601.
doi: 10.1139/o90-084 pmid: 2198059 |
[23] |
GOH C S, LEE Y, KIM S H . Calcium could be involved in auxin- regulated maintenance of the quiescent center in the Arabidopsis root. Journal of Plant Biology, 2012,55(2):143-150.
doi: 10.1007/s12374-011-9197-0 |
[24] |
VANNESTE S, FRIML J . Calcium: The missing link in auxin action. Plants, 2013,2:650-675.
doi: 10.3390/plants2040650 |
[25] |
TANTIKANJANA T, NASRALLAH J B . Non-cell-autonomous regulation of crucifer self-incompatibility by auxin response factor ARF3. Proceedings of the National Academy of Sciences of the USA, 2012,109(47):19468-19473.
doi: 10.1073/pnas.1217343109 pmid: 23129621 |
[26] |
毕云龙, 高启国, 施松梅, 刘晓欢, 蒲全明, 张莹, 张林成, 廉小平, 柳菁, 朱利泉 . 甘蓝BoSU03蛋白基因的克隆及其与SRK相互作用分析. 园艺学报, 2015,42(11):2206-2214.
doi: 10.16420/j.issn.0513-353x.2015-0352 |
BI Y L, GAO Q G, SHI S M, LIU X H, PU Q M, ZHANG Y, ZHANG L C, LIAN X P, LIU J, ZHU L Q . Cloning of BoSU03 protein gene and its interaction with SRK. Chinese Journal of Horticulture, 2015,42(11):2206-2214. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2015-0352 |
|
[27] |
THOMAS S G, HUANG S, LI S, STAIGER C J, VERNONICA E, FRANKLIN T . Actin depolymerization is sufficient to induce programmed cell death in self-incompatible pollen. The Journal of Cell Biology, 2006,174(2):221-229.
doi: 10.1083/jcb.200604011 pmid: 16831890 |
[28] | GEITMANN A, SNOWMAN B N, EMONS A M C, VERNONICA E, FRANKLIN T . Alterations in the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas. The Plant Cell, 2000,12(7):1239-1251. |
[29] |
CHEUNG A Y . Pollen-pistil interactions during pollen-tube growth. Trends in Plant Science, 1996,1(2):45-51.
doi: 10.1016/S1360-1385(96)80028-8 |
[30] |
HISCOCK S J, ALLEN A M . Diverse cell signalling pathways regulate pollen-stigma interactions: The search for consensus. New Phytologist, 2008,179(2):286-317.
doi: 10.1111/j.1469-8137.2008.02457.x |
[31] |
SHI S, GAO Q, ZENG J, LIU X H, PU Q M, ZHANG H C, YANG X H, ZHU L Q . N-terminal domains of ARC1 are essential for interaction with the N-terminal region of Exo70A1 in transducing self-incompatibility of Brassica oleracea. Acta Biochimica et Biophysica Sinica, 2016,48(9):777-787.
doi: 10.1093/abbs/gmw075 |
[32] |
杨红, 朱利泉, 张贺翠 . 利用酵母双杂交系统鉴定甘蓝SCR与SRK胞外域片段间的相互作用. 中国农业科学, 2011,44(9):1953-1962.
doi: 10.3864/j.issn.0578-1752.2011.09.024 |
YANG H, ZHU L Q, ZHANG H C . Study on the interactions between the truncated fragments of SCR and eSRK from Brassica oleracea L. by a yeast two-hybrid system. Scientia Agricultura Sinica, 2011,44(9):1953-1962. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.09.024 |
|
[33] |
施松梅, 高启国, 廉小平, 毕云龙, 刘晓欢, 蒲全明, 刘贵喜, 柳菁, 任雪松, 杨晓红, 朱利泉, 王小佳 . 结球甘蓝SRK-ARC1-Exo70A1互作域的确定及作用强度. 中国农业科学, 2016,49(1):14-26.
doi: 10.3864/j.issn.0578-1752.2016.01.002 |
SHI S M, GAO Q G, LIAN X P, BI Y L, LIU X H, PU Q M, LIU G X, LIU J, REN X S, YANG X H, ZHU L Q, WANG X J . Determination and interaction intensity of the SRK-ARC1-Exo70A1 Interaction field of Brassica oleracea. Scientia Agricultura Sinica, 2016,49(1):14-26. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.01.002 |
|
[34] |
张贺翠, 柳菁, 廉小平, 曾静, 杨昆 . 甘蓝 ROH1与EXO70A1的表达与相互作用. 中国农业科学, 2016,49(4):775-783.
doi: 10.3864/j.issn.0578-1752.2016.04.016 |
ZHANG H C, LIU J, LIAN X P, ZENG J, YANG K . Expression and Interaction of ROH1 and EXO70A1 in Brassica oleracea. Scientia Agricultura Sinica, 2016,49(4):775-783. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.04.016 |
|
[35] |
BENJAMINS R, CARLOS S, AMPUDIA G, HOOYKAAS P J J, OFFRINGA R . PINOID-mediated signaling involves calcium-binding proteins. Plant Physiology, 2003,132(3):1623-1630.
doi: 10.1104/pp.103.019943 |
[36] |
CHRISTENSEN S K, DAGENAIS N, CHORY J, WEIGEL D . Regulation of auxin response by the protein kinase PINOID. Cell, 2000,100(4):469-478.
doi: 10.1016/S0092-8674(00)80682-0 pmid: 10693763 |
[37] |
FRIML J, YANG X, MICHNIEWICZ M, WEIJERS D, QUINT A, TIETZ O . A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science, 2004,306(5697):862-865.
doi: 10.1126/science.1100618 |
[38] |
ZEGZOUTI H, ANTHONY R G, JAHCHAN N, BOGRE L, CHRISTENSEN S K . Phosphorylation and activation of PINOID by the phospholipid signaling kinase 3-phosphoinositide-dependent protein kinase 1 (PDK1) in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 2006,103(16):6404-6409.
doi: 10.1073/pnas.0510283103 pmid: 16601102 |
[39] |
MICHNIEWICZ M, ZAGO M K, ABAS L, WEIJERS D, SCHWEIGHOFER A, MESKIENE I, HEISLER M, GOHNO C, ZHANG J, HUANG F, SCHWAB R, WEIGEL D, MEYEROWITZ E M, LUSCHNIG C, OFFRINGA R, FRIML J . Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell, 2007,130(6):1044-1056.
doi: 10.1016/j.cell.2007.07.033 pmid: 17889649 |
[40] |
PARK J E, KIM Y S, YOON H K, PARK C M . Functional characterization of a small auxin-up RNA gene in apical hook development in Arabidopsis. Plant Science, 2007,172(1):150-157.
doi: 10.1016/j.plantsci.2006.08.005 |
[41] | KANT S, BI Y M, ZHU T, ROTHSTEIN S J . SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiology, 2009,151(2):691-701. |
[1] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[2] | 巢成生,王玉乾,沈欣杰,代晶,顾炽明,李银水,谢立华,胡小加,秦璐,廖星. 甘蓝型油菜苗期氮高效吸收转运特征研究[J]. 中国农业科学, 2022, 55(6): 1172-1188. |
[3] | 谢伶俐,韦丁一,章子爽,徐劲松,张学昆,许本波. 甘蓝型油菜发育进程中赤霉素动态变化及其与产量的关系[J]. 中国农业科学, 2022, 55(24): 4793-4807. |
[4] | 李雨泽,朱嘉伟,林蔚,蓝茉莹,夏黎明,张艺粒,罗聪,黄桂香,何新华. 香水柠檬RHF2A的克隆与互作蛋白的筛选[J]. 中国农业科学, 2022, 55(24): 4912-4926. |
[5] | 崔青青, 孟宪敏, 段韫丹, 庄团结, 董春娟, 高丽红, 尚庆茂. 断根与打顶对番茄嫁接愈合的抑制作用[J]. 中国农业科学, 2022, 55(2): 365-377. |
[6] | 李天聪,朱行,魏宁,龙凤,武建颖,张燕,董金皋,申珅,郝志敏. 玉米大斑病菌SC35同源基因表达规律与互作分析[J]. 中国农业科学, 2021, 54(4): 733-743. |
[7] | 叶迪,施江,高双成,王占营,史国安. 乙烯促进牡丹‘洛阳红’切花花瓣脱落与内源生长素的关联性分析[J]. 中国农业科学, 2021, 54(23): 5097-5109. |
[8] | 王洁,吴晓宇,杨柳,段巧红,黄家保. 大白菜ACA基因家族的全基因组鉴定与表达分析[J]. 中国农业科学, 2021, 54(22): 4851-4868. |
[9] | 孙雨晨,贾瑞璞,范阔海,孙娜,孙耀贵,孙盼盼,李宏全,尹伟. 猪I型补体受体与C3b活性片段相互结合的体外检测[J]. 中国农业科学, 2021, 54(19): 4243-4254. |
[10] | 马琳,温红雨,王学敏,高洪文,庞永珍. 紫花苜蓿MsMAX2的克隆及功能研究[J]. 中国农业科学, 2021, 54(19): 4061-4069. |
[11] | 吴世洋,杨晓祎,张艳雯,侯典云,胥华伟. 利用CRISPR/Cas9基因编辑技术构建水稻ospin9突变体[J]. 中国农业科学, 2021, 54(18): 3805-3817. |
[12] | 李艳林,SHAHID Iqbal,侍婷,宋娟,倪照君,高志红. 梅PmARF17克隆及其在花发育中与内源激素的调控模式[J]. 中国农业科学, 2021, 54(13): 2843-2857. |
[13] | 王刘艳,王瑞莉,叶桑,郜欢欢,雷维,陈柳依,吴家怡,孟丽姣,袁芳,唐章林,李加纳,周清元,崔翠. 苯磺隆胁迫下甘蓝型油菜萌发期关联性状的QTL定位及候选基因筛选[J]. 中国农业科学, 2020, 53(8): 1510-1523. |
[14] | 陈雪,王瑞,井付钰,张胜森,贾乐东,段谋正,吴宇. 基于二代测序的甘蓝型油菜白花基因候选区间定位及连锁标记验证[J]. 中国农业科学, 2020, 53(6): 1108-1117. |
[15] | 郝彦蓉,杜伟,侯思宇,王东航,冯红梅,韩渊怀,周美亮,张凯旋,刘龙龙,王俊珍,李红英,孙朝霞. 苦荞ARF基因家族的鉴定及生长素诱导下的表达模式[J]. 中国农业科学, 2020, 53(23): 4738-4749. |
|