[1] Gopalan S, Wei W, He S Y. hrp gene-dependent induction of hin1: a plant gene activated rapidly by both harpins and the avrPto gene-mediated signal. The Plant Journal, 1996, 10(4): 591-600.
[2] Takahashi Y, Berberich T, Yamashita K, Uehara Y, Miyazaki A, Kusano T. Identification of tobacco HIN1 and two closely related genes as spermine-responsive genes and their differential expression during the Tobacco mosaic virus-induced hypersensitive response and during leaf- and flower-senescence. Plant Molecular Biology, 2004, 54: 613-622.
[3] Century K S, Shapiro A D, Repetti P P, Dahlbeck D, Holub E, Staskawicz B J. NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science, 1997, 278: 1963-1965.
[4] Gijsegem F V, Gough C, Zischek C, Niqueux E, Arlat M, Genin S. The hrp gene locus of Pseudomonas solanacearum, which controls the production of a type III secretion system, encodes eight proteins related to components of the bacterial flagellar biogenesis complex. Molecular Microbiology, 1995, 15(6): 1095-1114.
[5] Salmeron J M, Staskawicz B J. Molecular characterization and hrp dependence of the avirulence gene avrPto from Pseudomonas syringae pv. tomato. Molecular & General Genetics, 1993, 239: 6-16.
[6] Pontier D, Gan S, Amasino R M, Roby D, Lam E. Markers for hypersensitive response and senescence show distinct patterns of expression. Plant Molecular Biology, 1999, 39: 1243-1255.
[7] Rakwal R, Agrawal G K, Tamogami S, Iwahashi H. Transcriptional profiling of OsHin1 in rice plants: a potential role in defense/stress and development. Plant Science, 2004, 166: 997-1005.
[8] Chong J, Henanff G L, Bertsch C, Walter B. Identification, expression analysis and characterization of defense and signaling genes in Vitis vinifera. Plant Physiology & Biochemistry, 2008, 46: 469-481.
[9] Zheng M S, Takahashi H, Miyazaki A, Yamaguchi K, Kusano T. Identification of the cis -acting elements in Arabidopsis thaliana NHL10 promoter responsible for leaf senescence, the hypersensitive response against Cucumber mosaic virus infection, and spermine treatment. Plant Science, 2005, 168: 415-422.
[10] Lee J, Klessig D F, Nürnberger T. A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis- related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. The Plant Cell, 2001, 13(5): 1079-1093.
[11] Varet A, Parker J, Tornero P, Nass N, Nürnberger T, Dangl J L. NHL25 and NHL3, two NDR1/HIN1-like genes in Arabidopsis thaliana with potential role (s) in plant defense. Molecular plant-microbe interactions, 2002, 15(6): 608-616.
[12] Liu Y, Schiff M, Marathe R, Dinesh‐Kumar S. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N‐mediated resistance to tobacco mosaic virus. The Plant Journal, 2002, 30(4): 415-429.
[13] Lu Y w, Yan F, Guo W, Zheng H y, Lin L, Peng J j, adams m j, chen j p. Garlic virus X 11‐kDa protein granules move within the cytoplasm and traffic a host protein normally found in the nucleolus. Molecular plant pathology, 2011, 12(7): 666-676.
[14] Xin Z, Wang A, Yang G, Gao P, Zheng Z L. The Arabidopsis A4 subfamily of lectin receptor kinases negatively regulates abscisic acid response in seed germination. Plant physiology, 2009, 149: 434-444.
[15] Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical biochemistry, 1987, 162: 156-159.
[16] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution, 2011, 28(10): 2731-2739.
[17] Krogh A, Larsson B, Von Heijne G, Sonnhammer E L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of molecular biology, 2001, 305: 567-580.
[18] Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 2011, 27(3): 343-350.
[19] 邱礽, 陶刚, 李奇科, 邱又彬, 刘作易. 农杆菌渗入法介导的基因瞬时表达技术及应用. 分子植物育种, 2009, 7(5): 1032-1039.
Qiu R, Tao G, Li Q K, Qiu Y B, Liu Z Y. Transient gene expression mediated by agroinfiltration and its application. Molecular Plant Breeding, 2009, 7(5): 1032-1039. (in Chinese)
[20] Voinnet O, Pinto Y M, Baulcombe D C. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24): 14147-14152.
[21] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCT method. Methods, 2001, 25: 402-408.
[22] Lee S B, Ham B K, Park J M, Kim Y J, Paek K H. BnNHL18A shows a localization change by stress-inducing chemical treatments. Biochemical and Biophysical Research Communications, 2006, 339: 399-406.
[23] 邓麟, 王晓杰, 刘新颖, 蔡高磊, 汤春蕾, 魏国荣, 黄丽丽, 康振 生. 条锈菌诱导的小麦TaHin1的克隆与表达特征分析. 中国农业科学, 2010, 43(10): 1977-1984.
Deng L, Wang X J, Liu X Y, Cai G L, Tang C L, Wei G R, Huang L L, Kang Z S. Isolation and expression analysis of a TaHin1 gene induced by stripe rust fungus in wheat. Scientia Agricultura Sinica, 2010, 43(10): 1977-1984. (in Chinese)
[24] 李岩, 王枫, 谭国飞, 贾晓玲, 蒋倩, 熊爱生. 芹菜NHL-like蛋白基因克隆与表达分析. 植物遗传资源学报, 2014, 15(4): 788-794.
Li Y, Wang F, Tan G F, Jia X L, Jiang Q, Xiong A S. Cloning and expression pattern analysis of NHL?like protein gene in celery. Journal of Plant Genetic Resources, 2014, 15(4): 788-794. (in Chinese)
[25] Goyal K, Walton L J, Tunnacliffe A. LEA proteins prevent protein aggregation due to water stress. Biochemical Journal, 2005, 388: 151-157.
[26] Coppinger P, Repetti P P, Day B D, Mehlert A, Staskawicz B J. Overexpression of the plasma membrane- localized NDR1 protein results in enhanced bacterial disease resistance in Arabidopsis thaliana. The Plant Journal, 2004, 40(2): 225-237.
[27] Varet A, Hause B, Hause G, Scheel D, Lee J. The Arabidopsis NHL3 gene encodes a plasma membrane protein and its overexpression correlates with increased resistance to Pseudomonas syringae pv. tomato DC3000. Plant Physiology, 2003, 132: 2023-2033.
[28] Knepper C, Savory E A, Day B. The role of NDR1 in pathogen perception and plant defense signaling. Plant Signaling & Behavior, 2011, 6(8): 1114-1116.
[29] Dörmann P, Gopalan S, Sheng Y H, Benning C. A gene family in Arabidopsis thaliana with sequence similarity to NDR1 and HIN1. Plant Physiology & Biochemistry, 2000, 38: 789-796.
[30] Zhao N, Sun B C, Zhao X L, Wang Y, Sun H Z, Dong X Y, Meng J, Gu Q. Changes in microRNAs associated with Twist-1 and Bcl-2 overexpression identify signaling pathways. Experimental and Molecular Pathology, 2015, 99: 524-532.
[31] Schaeffer S M, Nakta P A. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field. Plant Science, 2015, 240: 130-142.
[32] Belhaj K, Chaparro-Garcia A, Kamoun S, Patron N J, Nekrasov V. Editing plant genomes with CRISPR/Cas9. Current Opinion in Biotechnology, 2015, 32: 76-84. |