[1] 赵鹏. 玉米穗下节间长杂种优势的组学分析[D]. 郑州: 河南农业大学, 2015.
ZHAO P. Omics analysis of heterosis for internode length under ear in maize [D]. Zhengzhou: Henan Agricultural University, 2015. (in Chinese)
[2] Schnable P S, Springer N M. Progress toward understanding heterosis in crop plants. Annual Review of Plant Biology, 2013, 64: 71-88.
[3] WEI X, WANG B, PENG Q, WEI F, MAO K, ZHANG X, TANG J. Heterotic loci for various morphological traits of maize detected using a single segment substitution lines test-cross population. Molecular Breeding, 2015, 35(3): 1-13.
[4] Marcon C, Lamkemeyer T, Malik W A, Ungrue D, Piepho H P, Hochholdinger F. Heterosis-associated proteome analyses of maize (Zea mays L.) seminal roots by quantitative label-free LC–MS. Journal of Proteomics, 2013, 93: 295-302.
[5] SHANG L, WANG Y, CAI S, WANG X, LI Y, ABDUWELI A, HUA J. Partial dominance, overdominance, epistasis and QTL by environment interactions contribute to heterosis in two upland cotton hybrids. Genes Genomes Genetics, 2016, 6(3): 499-507.
[6] Reif J C, Hahn V, Melchinger A E. Genetic basis of heterosis and prediction of hybrid performance. Helia, 2012, 35(57): 1-8.
[7] SHEN G, ZHAN W, CHEN H, XING Y. Dominance and epistasis are the main contributors to heterosis for plant height in rice. Plant Science, 2014, 215: 11-18.
[8] DING H, QIN C, LUO X, LI L, CHEN Z, LIU H, L(U)BBERSTEDT T. Heterosis in early maize ear inflorescence development: a genome-wide transcription analysis for two maize inbred lines and their hybrid. International Journal of Molecular Sciences, 2014, 15(8): 13892-13915.
[9] Thiemann A, FU J, Seifert F, GRANT-DOENTON R T, SCHRAG T A, POSPISIL H, SCHOLTEN S. Genome-wide meta-analysis of maize heterosis reveals the potential role of additive gene expression at pericentromeric loci. BMC Plant Biology, 2014, 14(1): 88.
[10] ZHAO P, DING D, ZHANG F, ZHAO X, XUE Y, LI W, TANG J. Investigating the molecular genetic basis of heterosis for internode expansion in maize by microRNA transcriptomic deep sequencing. Functional & Integrative Genomics, 2015, 15(3): 261-270.
[11] CHEN Z J. Genomic and epigenetic insights into the molecular bases of heterosis. Nature Reviews Genetics, 2013, 14(7): 471-482.
[12] Virmani S S. Heterosis and hybrid rice breeding. Springer Science & Business Media, 2012.
[13] Sran R S, Pandey D P. Combining ability and heterosis for yield and its component traits in rice. ORYZA-an International Journal on Rice, 2015, 52(2): 105-110.
[14] Nayak P G, Sreedhar M, Vanisree S. Heterosis studies of aromatic lines for yield and grain quality traits in rice. 2015.
[15] Amiri-Oghan H, Fotokian M H, Javidfar F, Alizadeh B. Genetic analysis of grain yield, days to flowering and maturity in oilseed rape (Brassica napus L.) using diallel crosses. International Journal of Plant Production, 2012, 3(2): 19-26.
[16] Zou J, Zhu J, Huang S, Tian E, Xiao Y, Fu D, Meng J. Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theoretical and Applied Genetics, 2010, 120(2): 283-290.
[17] TWUMASI-AFRIYIE S, Friesen D, Pixley K. Quality protein maize: Progress and prospects. Plant breeding reviews, 2011, 34: 83.
[18] Riedelsheimer C, Czedik-Eysenberg A, Grieder C, LISEC J, TECHNOW F, SULPICE R, MELCHINGER A E. Genomic and metabolic prediction of complex he terotic traits in hybrid maize. Nature genetics, 2012, 44(2): 217-220.
[19] Ko D K, Rohozinski D, SONG Q, TAYLOR S H, JUENGER T E, HARMON F G, CHEN Z J. Temporal shift of circadian-mediated gene expression and carbon fixation contributes to biomass heterosis in maize hybrids. PLoS Genetics, 2016, 12(7): e1006197.
[20] Pan T C F, Applebaum S L, Manahan D T. Genetically determined variation in developmental physiology of bivalve larvae (Crassostrea gigas). Physiological and Biochemical Zoology, 2015, 88(2): 128-136.
[21] 王玉民, 席章营, 尚爱兰, 王帮太. 作物单片段代换系的构建及应用. 中国农学通报, 2008, 24(3): 67-71.
WANG Y M, XI Z Y, SHANG A L, WANG B T. The building and application of single segment substitution system in crop.Chinese Agricultural Science Bulletin, 2008, 24(3): 67-71. (in Chinese)
[22] 尚爱兰. 玉米单片段代换系的构建及产量性状杂种优势分析[D]. 郑州: 河南农业大学, 2009.
SHANG A L. The construction of a single segment substitution lines and heterosis of yield characters analysis [D]. Zhengzhou: Henan agricultural university, 2009. (in Chinese)
[23] 贾桂平, 边大红, 蔡丽君, 杜雄, 牛海峰, 崔彦宏. 土壤耕作方式对夏玉米抗茎倒伏能力的影响. 华北农学报, 2013, 28(4): 163-168.
JIA G P, BIAN D H, CAI L J, DU X, NIU H F, CUI C H. Soil Tillage practices on maize stem Lodging resistance. North of Agronomy Journal, 2013, 28(4): 163-168. (in Chinese)
[24] TENG F, ZHAI L, LIU R, BAI W, WANG L, HUO D, ZHANG Z. ZmGA3ox2, a candidate gene for a major QTL, qPH3. 1, for plant height in maize. The Plant Journal, 2013, 73(3): 405-416.
[25] TANG Z, YANG Z, HU Z, ZHANG D, LU X, JIA B, XU C. Cytonuclear epistatic quantitative trait locus mapping for plant height and ear height in maize. Molecular Breeding, 2013, 31(1): 1-14.
[26] CAI H, CHU Q, GU R, YUAN L, LIU J, ZHANG X, ZHANG F. Identification of QTLs for plant height, ear height and grain yield in maize (Zea mays L.) in response to nitrogen and phosphorus supply. Plant Breeding, 2012, 131(4): 502-510.
[27] LI Z Q, ZHANG H M, WU X P, SUN Y, LIU X H. Quantitative trait locus analysis for ear height in maize based on a recombinant inbred line population. Genetics and Molecular Research, 2014, 13(1): 450.
[28] 张君, 库丽霞, 张伟强, 杨爽, 刘海英, 赵瑞芳, 陈彦惠. 玉米穗上节间距的QTL定位. 玉米科学, 2010, 18(4): 45-48.
ZHANG J, KU L X, ZHANG W Q, YANG S, LIU H Y, ZHAO R F, CHEN Y H. Internodes of QTL location on the ear of corn. Corn Science, 2010, 18(4): 45-48. (in Chinese)
[29] Meghji M R, Dudley J W, Lambert R J, SPRAGUE G F. Inbreeding depression, inbred and hybrid grain yields, and other traits of maize genotypes representing three eras. Crop Science, 1984, 24(3): 545-549.
[30] 赵芳明, 张桂权, 曾瑞珍, 杨正林, 凌英华, 桑贤春, 何光华. 利用单片段代换系研究水稻产量相关性状QTL加性及上位性效应. 作物学报, 2012, 38(11): 2007-2014.
ZHAO F M, ZHANG G Q, ZENG R Z, YANG Z L, LING Y H, SANG X C, HE G H. Using single segment substitution lines research yield related traits QTL additive and epistatic effect in rice. Acta Agronomica Sinica, 2012, 38(11): 2007-2014. (in Chinese)
[31] 王召辉. 玉米株型穗部性状的QTL定位及分析[D]. 重庆: 西南大学, 2011.
WANG Z H. QTL mapping and analysis plant type panicle traits in maize [D]. Chongqing: Southwest university, 2011. (in Chinese)
[32] 王铁固, 张怀胜, 马娟, 佘宁安, 陈士林. 玉米产量及相关性状的杂种优势分析. 江苏农业科学, 2012, 40(8): 88-90.
WANG T G, ZHANG H S, MA J, SHE N A, CHEN S L. Yield heterosis analysis and related traits in maize. Jiangsu agricultural science (in Chinese), 2012, 40(8): 88-90.
[33] 郭小蛟, 张涛, 蒋开锋, 杨莉, 曹应江, 杨乾华, 高磊. 水稻籼粳交F8, F2群体穗长QTL比较分析. 中国农业科学, 2013, 46(23): 4849-4857.
GUO X J, ZHANG T, JIANG K F, YANG L, CAO Y J, YANG Q H, GAO L. Comparison of panicle length QTL based on F2 and F8 populations derived from rice subspecies cross. Scientia Agricultura Sinica, 2013, 46(23): 4849-4857. (in Chinese)
[34] Wallace J G, Larsson S J, Buckler E S. Entering the second century of maize quantitative genetics. Heredity, 2014, 112(1): 30-38.
[35] Huffman R D, Edwards J W, Pollak L M, SCOTT M P. Interaction of genetic mechanisms regulating methionine concentration in maize grain. Crop Science, 2016, 56(5): 2379-2389.
[36] HE G M, LUO X J, TIAN F, LI K G, ZHU Z F, SU W, YANG J S. Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome research, 2006, 16(5): 618-626.
[37] Pea G, Paulstephenraj P, Canè M A, SARDARO M L S, LANDI P, MORGANTE M, FRASCAROLI E. Recombinant near- isogenic lines: a resource for the mendelization of heterotic QTL in maize. Molecular Genetics and Genomics, 2009, 281(4): 447-457.
[38] Duvick D N. Theory, empiricism and intuition in professional plant breeding. Integrating knowledge and practice, 2002: 189-212. |