[1] 戴景瑞, 鄂立柱. 我国玉米育种科技创新问题的几点思考. 玉米科学, 2010(1): 1-5.
Dai J R, E L Z. Scientific and technological innovation of maize breeding in China. Journal of Maize Sciences, 2010(1): 1-5. (in Chinese)
[2] Hu R F, Huang J K, Jin S Q, Rozelle S. Assessing the contribution of China’s research system and CG genetic materials to the total factor productivity of maize of China. Journal of Rural Development Korea, 2000, 23(1): 33-70.
[3] 王懿波, 王振华, 王永普, 张新, 陆利行. 中国玉米主要种植杂交优势利用模式研究. 中国农业科学, 1997, 30(4): 16-24.
Wang Y B, Wang Z H, Wang Y P, Zhang X, Lu L X. Studies on the heterosis utilizing models of main maize germplasm in China. Scientia Agricultura Sinica, 1997, 30(4): 16-24. (in Chinese)
[4] 刘新芝, 彭泽斌, 傅骏骅, 李连城, 黄长玲. RAPD在玉米类群划分研究中的应用. 中国农业科学, 1997, 30(3): 44-51.
Liu X Z, Peng Z B, Fu J H, Li L C, Huang C L. Heterotic grouping of 15 maize inbreds with RAPD markers. Scientia Agricultura Sinica, 1997, 30(3): 44-51. (in Chinese)
[5] Laude T P, Carena M J. Genetic diversity and heterotic grouping of tropical and temperate maize populations adapted to the northern U.S. Corn Belt. Euphytica, 2015, 204: 661-677.
[6] van Heerwaarden J, Hufford M B, Ross-Ibarra J. Historical genomics of North American maize. Proceedings of the National Academy of Sciences of the USA, 2012, 109(31): 12420-12425.
[7] 李新海, 傅骏骅 张世煌, 袁力行, 李明顺. 利用SSR标记研究玉米自交系的遗传变异, 中国农业科学, 2000, 33(2): 1-9.
Li X H, Fu J H Zhang S H, Yuan L X, Li M S. Genetic variation of inbred lines of maize detected by SSR markers. Scientia Agricultura Sinica, 2000, 33(2): 1-9. (in Chinese)
[8] 袁力行, 付骏华, 刘新芝, 彭泽斌, 张世煌, 李新海, 李连城. 利用分子标记预测玉米杂种优势的研究. 中国农业科学, 2000, 33(6): 6-12.
Yuan L X, Fu J H, Liu X Z, Peng Z B, Zhang S H, Li X H, Li L C. Study on prediction of heterosis in maize (Zea mays L.) using the molecular markers. Scientia Agricultura Sinica, 2000, 33(6): 6-12. (in Chinese)
[9] Li Y, Du J P, Wang T Y, Shi Y S, Song Y C, Jia J J. Genetic diversity and relationships among Chinese maize inbred lines revealed by SSR markers. Maydica, 2002(47): 93-101.
[10] 王懿波, 王振华, 王永普, 张新, 陆利行, 田曾元. 中国玉米主要种质的改良与杂优模式的利用. 玉米科学, 1999, 7(1): 1-8.
Wang Y B, Wang Z H, Wang Y P, Zhang X, Lu L X, Tian Z Y. The improvement of principal maize germplasms and utilization of heterosis models in China. Journal of Maize Sciences, 1999, 7(1): 1-8. (in Chinese)
[11] 李永祥, 石云素, 宋燕春, 黎裕, 王天宇. 中国玉米品种改良及其种质基础分析. 中国农业科技导报, 2013, 15(3): 30-35.
Li Y S, Shi Y S, Song Y C, Li Y, Wang T Y. Improvement of maize hybrids and the analysis of basal germplasm in China. Journal of Agriculture Science and Technology, 2013, 15(3): 30-35. (in Chinese)
[12] 高翔, 陈泽辉, 祝云芳. 我国玉米育种中美国改良Reid和78599种质的作用及其再利用. 西南农业学报, 2003(3): 98-101.
Gao X, Chen Z H, Zhu Y F. Research and utilization of Reid and 78599 germplasms in China. Southwest China Journal of Agricultural Sciences,2003(3): 98-101. (in Chinese)
[13] 张洋, 张喜华. 玉米78599种质的杂优模式及其改良利用. 玉米科学, 2008(3): 37-40.
Zhang Y, Zhang X H. Heterotic pattern, improvement and utilization of corn 78599 germplasm. Journal of Maize Sciences, 2008(3): 37-40. (in Chinese)
[14] 张仁和, 夏建刚, 薛吉全, 师公贤. 美国玉米种质78599的利用与改良. 农艺科学, 2004(6): 128-130.
Zhang R H, Xia J G, Xue J Q, Shi G X. Improvement and utilization of maize 78599 germplasm. Chinese Agricultural Science Bulletin, 2004(6): 128-130. (in Chinese)
[15] 赵久然, 郭景伦, 郭强, 尉德铭, 孔艳芳. 应用RAPD分子标记技术对我国骨干玉米自交系进行类群划分. 华北农学报, 1999(1): 32-37.
Zhao J R, Guo J L, Guo Q, Yu D M, Kong Y F. Heterotic grouping of 25 maize inbreds with RAPD marker. Acta Agriculturae Boreali-Sinica, 1999(1): 32-37. (in Chinese)
[16] 黎裕, 王天宇. 我国玉米育种种质基础与骨干亲本的形成. 玉米科学, 2010(5): 1-8.
Li Y, Wang T Y. Germplasm base of maize breeding in China and formation of foundation parents. Journal of Maize Sciences, 2010(5): 1-8. (in Chinese)
[17] Poethig R S. Maize, the plant and its parts// Sheridan W F. Maize for Biological Research. University North Dakota Press, Grand Forks, ND. 1982, 434.
[18] Wang J, Zhong G Y, Chin E C L, Register J C, Riley R D, Niebur W S, Smith J S C. Identification of parents of F1 hybrids through SSR profiling of maternal and hybrid tissue. Euphytica, 2002, 124: 29-33.
[19] 赵久然, 刘龙洲, 王凤格, 郭景伦, 王元东. 利用杂交种玉米F1代种子果皮组织鉴定母本真实性的SSR研究. 玉米科学, 2014(3): 6-8.
Zhao J R, Liu L Z, Wang F G, Guo J L, Wang Y D. Identification authenticity of female parent of F1 hybrids through SSR profiling of pericarp tissue in hybrid. Journal of Maize Science, 2014(3): 6-8. (in Chinese)
[20] Guan Y X, Wang B H, Feng Y, Li P. Development and application of marker-assisted reverse breeding using hybrid maize germplasm. Journal of Integrative Agriculture, 2015, 14(12): 2538-2546.
[21] 刘龙洲. 自玉米F1种子获得父本、母本全套DNA指纹图谱的研究 [D]. 乌鲁木齐: 新疆农业大学, 2004.
Liu L Z. Study on the hybrid and parents DNA fingerprint from F1 seeds [D]. Urumqi: Xinjiang Agricultural University, 2004. (in Chinese)
[22] 高玉峰, 张攀, 郝晓敏, 严建兵, 李建生, 杨小红. 一种快速提取玉米大群体基因组DNA的方法. 中国农业大学学报, 2011(6): 32-36.
Gao Y F, Zhang P, Hao X M, Yan J B, Li J S, Yang X H. A rapid DNA extraction method for large maize populations. Journal of China Agricultural University, 2011(6): 32-36. (in Chinese)
[23] Chourey P S, Nelson O E. The enzymatic deficiency conditioned by the shrunken-1 mutations in maize. Biochemical Genetics, 1976, 14(11/12): 1041-1055.
[24] Saghai Maroof M A, Biyashev R M, Yang G P, Zhang Q, Allard R W. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proceedings of the National Academy of Sciences of the USA, 1994, 91(12): 5466-5470.
[25] Berloo P V. GGT 2.0: Versatile software for visualization and analysis of genetic data. Journal of Heredity, 2008, 99(2): 232-236.
[26] Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596-1599.
[27] Huang J, Qi H H, Feng X M, Huang Y Q, Zhu L L, Yue B. General combining ability of most yield-related traits had a genetic basis different from their corresponding traits per se in a set of maize introgression lines. Genetica, 2013, 141(10): 453-461.
[28] Dirks R, van Dun K, de Snoo C B, van den Berg M, Lelivelt C L C, Voermans W, Woudenberg L, de Wit J P C, Reinink K, Schut J W, van der Zeeuw E, Vogelaar A, Freymark G, Gutteling E W, Keppel M N, van Drongelen P, Kieny M, Ellul P, Touraev A, Ma H, de Jong H, Wijnker E. Reverse breeding: a novel breeding approach based on engineered meiosis. Plant Biotechnology Journal, 2009, 7(9): 837-845.
[29] Wijnker E, van Dun K, de Snoo C B, Lelivelt C L C, Keurentjes J J B, Naharudin N S, Ravi M, Chan S W L, de Jong H, Dirks R. Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant. Nature Genetics, 2012, 44(4): 467-470.
[30] Wijnker E, Deurhof L, van de Belt J, de Snoo C B, Blankestijn H, Becker F, Ravi M, Chan S W L, van Dun K, Lelivelt C L C, de Jong H, Dirks R, Keurentjes J J B. Hybrid recreation by reverse breeding in Arabidopsis thaliana. Nature Protocols, 2014, 9(4): 761-772.
[31] Lusser M, Parisi C, Plan D, Rodriguez-Cerezo E. Deployment of new biotechnologies in plant breeding. Nature Biotechnology, 2012, 30(3): 231-239.
[32] 刘忠松. 作物遗传育种研究进展:Ⅳ. 双单倍体育种与反向育种. 作物研究, 2014, 28(5): 575-579.
Liu Z S. Research development of crop genetic and breeding: Ⅳ Doubled haploid breeding and reverse breeding. Crop Research, 2014, 28(5): 575-579. (in Chinese) |