[1] Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 2007, 100(4): 681-697.
[2] Bari R, Jones J D. Role of plant hormones in plant defence responses. Plant Molecular Biology, 2009, 69(4): 473-488.
[3] Reinbothe C, Springer A, Samol I, Reinbothe S. Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. Febs Journal, 2009, 276(17): 4666-4681.
[4] Robert-Seilaniantz A, Grant M, Jones J D. Hormone crosstalk in plant disease and defense: more than just jasmonate- salicylate antagonism. Annual Review of Phytopathology, 2011, 49: 317-343.
[5] Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D. The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. The Plant Cell, 2011, 23(3): 1000-1013.
[6] Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 2013, 111(6): 1021-1058.
[7] Xie D X, Feys B F James S, Nieto-Rostro M, Turner J G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 1998, 280(5366): 1091-1094.
[8] Feys B J F, Benedetti C E, Penfold C N, Turner J G. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. The Plant Cell, 1994, 6(5): 751-759.
[9] Katsir L, Schilmiller A L, Staswick P E, He S Y, Howe G A. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proceedings of the National Academy of Sciences of the USA, 2008, 105(19): 7100-7105.
[10] Xu L, Liu F, Lechner E, Genschik P, Crosby W L, Ma H, Peng W, Huang D, Xie D. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. The Plant Cell, 2002, 14(8): 1919-1935.
[11] Yan J, Li H, Li S, Yao R, Deng H, Xie Q, Xie D. The Arabidopsis F-box protein CORONATINE INSENSITIVE1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway. The Plant Cell, 2013, 25(2): 486-498.
[12] Chini A, Fonseca S, Fernández G, Adie B, Chico J M, Lorenzo O, García-Casado G, López-Vidriero, Lozano F M, Ponce M R, Micol J L, Solano R. The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 2007, 448(7154): 666-671.
[13] Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He S Y, Howe G A, Browse J. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature, 2007, 448(7154): 661-665.
[14] Ye H Y, Du H, Tang N, Li X H, Xiong L Z. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Molecular Biology, 2009, 71(3): 291-305.
[15] Zhu D, Bai X, Luo X, Chen Q, Cai H, Ji W, Zhu Y. Identification of wild soybean (Glycine soja) TIFY family genes and their expression profiling analysis under bicarbonate stress. Plant Cell Reports, 2013, 32(2): 263-272.
[16] Zhang Y C, Gao M, Singer S D, Fei Z J, Wang H, Wang X P. Genome-wide identification and analysis of the TIFY gene family in grape. PLoS One, 2013, DOI: 10.1371/journal.pone.0044465.
[17] 吴华. 水稻JAZ家族抗逆相关基因的鉴定和功能分析[D]. 武汉: 华中农业大学, 2015.
Wu H. Characterization and function analysis of rice stress-related JAZ genes [D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese)
[18] Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G. The tify family previously known as ZIM. Trends in Plant Science, 2007, 12(6): 239-244.
[19] Yan Y X, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, Farmer E E. A downstream mediator in the growth repression limb of the jasmonate pathway. The Plant Cell, 2007, 19(8): 2470-2483.
[20] Chung H S, Howe G A. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-Domain protein JAZ10 in Arabidopsis. The Plant Cell, 2009, 21(1): 131-145.
[21] Hakata M, Kuroda M, Ohsumi A, Hirose T, Nakamura H, Muramatsu M, Ichikawa H, Yamakawa H. Overexpression of a rice TIFY gene increases grain size through enhanced accumulation of carbohydrates in the stem. Bioscience Biotechnology, and Biochemistry, 2012, 76(11): 2129-2134.
[22] Zhou X, Yan S, Sun C, Li S, Li J, Xu M, Liu X, Zhang S, Zhao Q, Li Y, Fan Y, Chen R, Wang L. A maize jasmonate zim-domain protein, ZmJAZ14, associates with the JA, ABA, and GA signaling pathways in transgenic Arabidopsis. PloS One, 2015, 10(3): e0121824.
[23] Zhu D, Cai H, Luo X, Bai X, Deyholos M K, Chen Q, Chen C, Ji W, Zhu Y. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance. Biochemical and Biophysical Research Communications, 2012, 426(2): 273-279.
[24] Lorenzo O, Chico J M, Sanchez-Serrano J J, Solano R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. The Plant Cell, 2004, 16(7): 1938-1950.
[25] Dombrecht B, Xue G P, Sprague S J, Kirkegaard J A, Ross J J, Reid J B, Fitt G P, Sewelam N, Schenk P M, Manners J M, Kazan K. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. The Plant Cell, 2007, 19(7): 2225-2245.
[26] Niu Y, Figueroa P, Browes J. Characterization of JAZ- interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. Journal of Experimental Botany, 2011, 62(6): 2143-2154.
[27] Kazan K, Manners J M. MYC2: the Master in Action. Molecular Plant, 2013, 6(3): 686-703.
[28] Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla J M, Pauwels L, Witters E, Puga M I, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Roberto S. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. The Plant Cell, 2011, 23(2): 701-715.
[29] Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D. The jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. The Plant Cell, 2011, 23(5): 1795-1814.
[30] An X H, Tian Y, Chen K Q, Liu X J, Liu D D, Xie X B, Cheng C G, Cong P H, Hao Y J. MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant and Cell Physiology, 2015, 56(4): 650-662.
[31] Hou X, Lee L Y C, Xia K, Yan Y, Yu H. DELLAs modulate jasmonate signaling via competitive binding to JAZs. Developmental Cell, 2010, 19(6): 884-894.
[32] Kazan K, Manners J M. JAZ repressors and the orchestration of phyto-hormone crosstalk. Trends in Plant Science, 2012, 17(1): 22-31.
[33] Schwechheimer C. Gibberellin signaling in plants–the extended version. Frontiers in Plant Science, 2011, 2: 107.
[34] Yang D L, Yao J, Mei C S, Tong X H, Zeng L J, Li Q, Xiao L T, Sun T P, Deng X W, Lee C, Thomashow M F, Yang Y, He Z, He S. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceedings of the National Academy of Sciences of the USA, 2012, 109(19): E1192-E1200.
[35] Zhu Z, An F, Feng Y, Li P, Xue L, A M, Jiang Z, Kim J, To T K, Li W, Zhang X, Yu Q, Dong Z, Chen W, Seki M, Zhou J M, Guo H. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 2011, 108(30): 12539-12544.
[36] Li X Q, Yin X J, Wang H, Li J, Guo C L, Gao H, ZHENG Y, FAN C H, Wang X P. Genome-wide identification and analysis of the apple (Malus × domestica Borkh.) TIFY gene family. Tree Genetics & Genomes, 2015, 11(1): 1-13.
[37] Chini A, Fonseca S, Chico J M, Fernández-Calvo P, Solano R. The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. The Plant Journal, 2009, 59(1): 77-87.
[38] Bai Y, Meng Y, Huang D, Qi Y, Chen M. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family. Genomics, 2011, 98(2): 128-136.
[39] 孙程. 玉米TIFY家族ZmJAZ14基因的功能验证[D]. 北京: 中国农业科学院, 2013.
Sun C. Identification and characterization of maize (Zea mays L.) ZmJAZ14 gene of TIFY family [D]. Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[40] Oh Y, Baldwin I T, Gális I. NaJAZh regulates a subset of defense responses agains herbivores and spontaneous leaf necrosis in Nicotiana attenuata plants. Plant Physiology, 2012, 159: 769-788.
[41] Oh Y, Baldwin I T, Galis I. A Jasmonate ZIM-domain protein NaJAZd regulates floral jasmonic acid levels and counteracts flower abscission in Nicotiana attenuata Plants. PloS One, 2013, 8(2): e57868. |