中国农业科学 ›› 2014, Vol. 47 ›› Issue (2): 230-239.doi: 10.3864/j.issn.0578-1752.2014.02.003

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

冀豆12遗传背景下3个回交组合高低蛋白含量 后代品系SSR标记分析

 陈强1, 2, 闫龙1, 杨春燕1, 张嘉楠1, 史晓蕾1, 东方阳2, 邓莹莹1, 2, 侯文焕1, 张孟臣1, 2   

  1. 1、河北省农林科学院粮油作物研究所/国家大豆改良中心石家庄分中心/农业部黄淮海大豆生物学与遗传育种重点实验室/河北省遗传育种重点实验室,石家庄 050035;
    2、河北科技师范学院,河北昌黎 066600
  • 收稿日期:2013-11-26 出版日期:2014-01-15 发布日期:2013-12-31
  • 通讯作者: 张孟臣,Tel:0311-87670653;E-mail:mengchenzhang@hotmail.com
  • 作者简介:陈强,E-mail:chenqiangwsm@163.com
  • 基金资助:

    国家“863”计划(2012AA101106)、国家现代农业产业技术体系(CARS-004-PS06)、国家“十二五”科技支撑计划(2011BAD35B06)、国家自然科学基金(31201234)

SSR Markers Linked to High and Low Protein Content Strains Derived from 3 Backcross Combinations Under Jidou 12 Genetic Background

CHEN Qiang-1, 2 , YAN Long-1, YANG Chun-Yan-1, ZHANG Jia-Nan-1, SHI Xiao-Lei-1, DONG Fang-Yang-2, DENG Ying-Ying-1, 2 , HOU Wen-Huan-1, ZHANG Meng-Chen-1, 2   

  1. 1、Hebei Academy of Agricultural and Forestry Sciences/National Soybean Improvement Center Shijiazhuang Sub-Center/North China Key Laboratory of Soybean Biology and Genetic Improvement, Ministry of Agriculture/Cereal & Oil Crop Institute, Shijiazhuang 050035;
    2、Hebei Normal University of Science Technology, Changli 066600, Hebei
  • Received:2013-11-26 Online:2014-01-15 Published:2013-12-31

摘要: 【目的】以高蛋白、高产、高配合力大豆品种冀豆12为遗传基础,创造高蛋白含量新种质,分析蛋白含量相关QTL及其连锁标记,挖掘QTL中包含的优异基因,为高蛋白育种提供新种质、新标记。【方法】以冀豆12为轮回亲本,来自东北地区的红丰11、茶秣食豆、绥农14等蛋白质含量不同的育成品种和地方品种为供体亲本,通过有限回交,创造高蛋白新种质。从3个组合的回交后代品系中,选择农艺性状一致、产量与冀豆12无显著差异的4个高蛋白(50%—53%)品系和3个中低蛋白(38%—41%)品系为试验材料,参照大豆公共遗传连锁图谱,分别在20个连锁群上,均匀选取并筛选在双亲间表现多态性的SSR标记,分析冀豆12及其后代品系的遗传相似性与遗传差异,确定与蛋白质含量相关的QTL及其连锁标记。通过对QTL候选区间内的基因功能注释,挖掘与蛋白质含量相关的优异基因。【结果】创制出一批蛋白质含量超过50%的高蛋白新种质。3个组合中分别筛选到209、201和199个双亲间多态性标记;亲本与后代间遗传相似性分析结果表明,同一组合的后代中高蛋白品系的轮回亲本遗传背景回复率高于低蛋白品系遗传背景回复率。3个组合中4个高蛋白品系与轮回亲本冀豆12之间的相似系数平均值为79.58%,显著高于3个低蛋白品系材料与轮回亲本冀豆12之间的相似系数平均值67.81%;轮回亲本冀豆12传递给高蛋白种质的SSR位点数平均为161个,传递给低蛋白材料的SSR位点平均数为135个,二者相差27%。遗传效应分析结果表明,共发掘出位于14个连锁群上的22个与蛋白质含量相关的QTL及其连锁SSR标记,其中,18个QTL的蛋白质含量增效基因来自轮回亲本冀豆12。进一步分析显示,4个共性高蛋白染色体区段对高蛋白含量形成具有关键作用,分别位于C1连锁群(第4染色体)的75.52—80.62 cM、D2连锁群(第17染色体)的67.71—84.18 cM、G连锁群(第18染色体)的80.38—96.57 cM和I连锁群(第20染色体)的46.22—50.11 cM。通过基因功能注释和代谢途径分析,预测了4个区段内20个可能参与7-磷酸景天庚酮糖、半胱氨酸、谷氨酸、丝氨酸、甲硫氨酸、色氨酸等氨基酸的合成与代谢等蛋白质合成相关代谢途径的候选基因。【结论】冀豆12含有较多的高蛋白QTL位点,供体亲本的高蛋白遗传位点可以在以冀豆12为轮回亲本的后代中表现出来,并通过SSR分析检测到。以冀豆12为轮回亲本,通过有限回交,易于创造出高蛋白种质。

关键词: 冀豆12 , 蛋白含量 , SSR标记 , 染色体片段

Abstract: 【Objective】 The objective of this study is to investigate the QTL and their chromosomal segments that determine the seed protein content of progeny strains of high-protein and low protein content, which derived from the crosses between high combing-ability cultiver Jidou 12 and three other cultrivers. By accomplishment of these analyses, the results will provide a basis for the use of high-protein breeding. 【Method】 High protein germplasm materials with protein content more than 50% were created by backcrossing strategy using Jidou 12 as recurrent parent varieties and three different varieties as donor parents. Four high-protein (50%-53%) strains and three low protein (38%-41%) strains were selected from propeny strains of three backcrosses (Hongfeng 11, Chamoshidou and Suinong 14 as the donor parent of three backcrosses). These strains had the same agronomic traits and had no significant difference with Jidou 12. Differences in QTL loci between progeny strains and Jidou12 were analyzed by using 209, 201, and 199 polymorphic SSR markers, respectively, in strains from three backcrosses. Degrees in QTL expression and sharing in terms of protein contents among different strains and crosses were investigated. 【Result】 The high-protein strains had better genetic recovery than that of low protein strains in the same backcross progeny. The similarity coefficient between two high protein strains, H116 and H117 from Jidou12 × Chamoshidou, and Jidou12, were 83.08% and 84.04%, respectively, which was 71.14% higher than that of the low protein strains. The average of similarity coefficient between four high protain strains and Jidou12 was 79.58%, significantly higher than that of three low protein strains and Jidou12. Linkage analyses using SSR markers indicated that high-protein lines and low-protein lines had remarkable differences in genetic locations. The major difference was inherited from Jidou 12 , which is 27 % (23 loci) on average. SSR markers were initially linked to 22 genomic regions in the three crosses, including 18 for increasing the protein content with allelic variation from Jidou 12. Further analysis identified four different loci in the three backcross population for high-and-low protein chromosome segments: D2 linkage group between 67.71 - 84.18 cM, G chain group between 80.38 - 96.57 cM, C1 linkage group between 75.52 - 80.62 cM, and I chain group bewteen 46.22 - 50.11 cM. 【Conculusion】 Jidou 12 contains a large number of high-protein QTL genetic loci and provides an essential genetic background in high-protein breeding. High-protein genetic loci from donor parents were detected by SSR markers in the progeny populations with Jidou12 as the recurrent parent. This study lays a foundation for excavating excellent genes and high-protein breeding.

Key words: Jidou12 , protein content , SSR markers , chromosome segment