[1]Reitz S R. Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): the making of a pest. Florida Entomologist, 2009, 92(1): 7-13.
[2]Reitz S R, Gao Y L, Lei Z R. Thrips: pest of concern to China and the United States. Agricultural Sciences in China, 2011, 10(6): 867-892.
[3]Ullman D E, Meidero R, Campbell L R, Whitfield A E, Sherwood J L, German T L. Thrips as vectors of tospoviruses. Advances in Botanical Research, 2002, 36: 113-140.
[4]Pappu H R, Jones R A, Jain R K. Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Research, 2009, 141: 219-236.
[5]张友军, 吴青君, 徐宝云, 朱国仁. 危险性外来入侵生物-西花蓟马在北京发生危害. 植物保护, 2003, 29(4): 58-59.
Zhang Y J, Wu Q J, Xu B Y, Zhu G R. Dangerous alien invasive species-occurrence and damages of Frankliniella occidentalis in Beijing. Plant Protection, 2003, 29(4): 58-59. (in Chinese)
[6]雷仲仁, 问锦曾, 王音. 危险性外来入侵害虫-西花蓟马的鉴别、危害及防治. 植物保护, 2004, 30(3): 63-66.
Lei Z R, Wen J Z, Wang Y. The discrimination, damage and control of Frankliniella occidentalis-a dangerous alien invasive pest. Plant Protection, 2004, 30(3): 63-66. (in Chinese)
[7]吴青君, 徐宝云, 张治军, 张友军, 朱国仁. 京、浙、滇地区植物蓟马种类及其分布调查. 中国植保导刊, 2007, 27(1): 32-34.
Wu Q J, Xu B Y, Zhang Z J, Zhang Y J, Zhu G R. Investigation on species and distribution of plant thrips in Beijing, Zhejiang and Yunnan. China Plant Protection, 2007, 27(1): 32-34. (in Chinese)
[8]袁成明, 郅军锐, 李景柱, 张勇. 贵州省蔬菜蓟马种类调查研究. 中国植保导刊, 2008, 28(7): 8-10.
Yuan C M, Zhi J R, Li J Z, Zhang Y. Investigation on the species of thrips in fields of vegetable in Guizhou Province. China Plant Protection, 2008, 28(7): 8-10. (in Chinese)
[9]王海鸿, 雷仲仁, 李雪, 代安国, 陈翰秋. 西藏发现重要外来入侵害虫-西花蓟马. 植物保护, 2013, 39(1): 181-183.
Wang H H, Lei Z R, Li X, Dai A G, Chen H Q. An important invasive pest, Frankliniella occidentalis, inspected in Tibet. Plant Protection, 2013, 39(1): 181-183. (in Chinese)
[10]Chi H, Su H Y. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology, 2006, 35(1): 10-21.
[11]McDonald J R, Bale J S, Walters K F A. Effect of temperature on development of the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). European Journal of Entomology, 1998, 95(2): 301-306.
[12]Ishida H, Murai T, Sonoda S, Yoshida H, Izumi Y, Tsumuki H. Effects of temperature and photoperiod on development and oviposition of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Applied Entomology and Zoology, 2003, 38(1): 65 -68.
[13]李景柱, 郅军锐, 盖海涛. 寄主和温度对西花蓟马生长发育的影 响. 生态学杂志, 2011, 30(3): 558-563.
Li J Z, Zhi J R, Gai H T. Effects of host plants and temperature on Frankliniella occidentalis growth and development. Chinese Journal of Ecology, 2011, 30(3): 558-563. (in Chinese)
[14]van Rijn P C J, Mollema C, Steenhuis- Broers G M. Comparative life history studies of Frankliniella occidentalis and Thrips tabaci (Thynsanoptera: Thripedae) on cucumber. Bulletin of Entomological Research, 1995, 85: 285-297.
[15]Gaum W G, Giliomee J H, Pringle K L. Life history and life tables of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), on English cucumber. Bulletin of Entomological Research, 1994, 84: 219-224.
[16]曹宇, 郅军锐, 孔译贤. 西花蓟马在6种蔬菜寄主上的实验种群生命表. 生态学报, 2012, 32(4): 1249-1256.
Cao Y, Zhi J R, Kong Y X. Life tables for experimental populations of Frankliniella occidentalis on 6 vegetable host plants. Acta Ecologica Sinica, 2012, 32(4): 1249-1256. (in Chinese)
[17]Carrington L B, Seifert S N, Willits N H, Lambrechts L, Scott T W. Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life history traits. Journal of Medical Entomology, 2013, 50(1): 43-51.
[18]Tun-Lin W, Burkot T R, Kay B H. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland Australia. Medical and Veterinary Entomology, 2000, 14(1): 31-37.
[19]Bahar M D H, Soroka J J, Dosdall L M. Constant versus fluctuating temperatures in the interactions between Plutella xylostella (Lepidoptera: Plutellidae) and its larval parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Environmental Entomology, 2012, 41(6): 1653-1661.
[20]Niederegger S, Pastuschek J, Mall G. Preliminary studies of the in?uence of ?uctuating temperatures on the development of various forensically relevant ?ies. Forensic Science International, 2010, 199: 72-78.
[21]李银平. 球孢白僵菌对蓟马控制技术研究[D]. 北京: 中国农业科学院, 2012.
Li Y P. Research on technology to control thrips with the entomopathogenic fungus, Beauveria bassiana[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[22]Liang X H, Lei Z R, Wen J Z, Zhu M L. The diurnal flight activity and influential factors of Frankliniella occidentalis in the greenhouse. Insect Science, 2010, 17(6): 535-541.
[23]顾秀慧, 贝亚维, 高春先, 陈华平. 用凹玻片饲养棕榈蓟马. 昆虫知识, 2001, 38(1): 71-73.
Gu X H, Bei Y W, Gao C X, Chen H P. Rearing technique of palm thrips. Thrips palmi Karny, with microscope concave slides. Entomological Knowledge, 2001, 38(1): 71-73. (in Chinese)
[24]Chi H, Liu H. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica, 1985, 24(2): 225-240.
[25]Chi H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 1988, 17(1): 26-34.
[26]Chi H. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. http://140.120.197.173/Ecology/Download/ Twosex-MSChart.zip.
[27]Efron B, Tibshirani R J. An Introduction to the Bootstrap. New York: Chapman and Hall, 1993.
[28]Fisher R A. The Genetical Theory of Natural Selection. Oxford, United Kingdom: Clarendon Press, 1930.
[29]Lewontin R C. Selection for colonizing ability//Baker H G, Stebbins G L. The Genetics of Colonizing Species. Academic, San Diego, California, 1965: 77-91.
[30]Fischer K, Kolzow N, Holtje H, Karl I. Assay conditions in laboratory experiments: is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity? Oecologia, 2011, 166: 23-33.
[31]Htwe A N, Murata M, Takano S, Nakamura S. Effects of constant and fluctuating temperatures on development of the coconut hispine beetle, Brontispa longissima (Coleoptera: Chrysomelidae) and two species of parasitoid. Biocontrol Science and Technology, 2013, 23(5): 574-583.
[32]Fantinou A A, Perdikis D C, Chatzoglou C S. Development of immature stages of Sesamia nonagrioides (Lepidoptera: Noctuidae) under alternating and constant temperatures. Environmental Entomology, 2003, 32(6): 1337-1342.
[33]Hagstrum D W, Leach C E. Role of constant and fluctuating temperature in determining development time and fecundity of three species of stored-products Coleoptera. Annals of the Entomological Society of America, 1973, 66(2): 407-410.
[34]Hentschel B T. Complex life cycles in a variable environment: predicting when the timing of metamorphosis shifts from resource dependent to developmentally ?xed. The American Naturalist, 1999, 154(5): 549-558.
[35]Dmitriew C, Rowe L. Resource limitation, predation risk and compensatory growth in a damsel?y. Oecologia, 2005, 142(1): 150-154.
[36]Atkinson D. Temperature and organism size-a biological law for ectotherms? Advances in Ecological Research, 1994, 25: 1-58.
[37]Karl I, Stoks R, De Block M, Janowitz SA, Fischer K. Temperature extremes and butterfly fitness: conflicting evidence from life history and immune function. Global Change Biology, 2011, 17(2): 676-687.
[38]Kingsolver J G, Woods H A. Thermal sensitivity of growth and feeding in Manduca sexta caterpillars. Physiological and Biochemical Zoology, 1997, 70(6): 631-638.
[39]Karl I, Fischer K. Why get big in the cold? Towards a solution of a life-history puzzle. Oecologia, 2008, 155(2): 215-225.
[40]Berwaerts K, Van Dyck H. Take-off performance under optimal and suboptimal thermal conditions in the butterfly Pararge aegeria. Oecologia, 2004, 141(3): 536-545.
[41]Geister T L, Fischer K. Testing the beneficial acclimation hypothesis: temperature effects on mating success in a butterfly. Behavioral Ecology, 2007, 18(4): 658-664. |