[1] Hallman G J, Denlinger D L. Introduction: temperature sensitivity and integrated pest management//Hallman G J, Denlinger D L. Temperature Sensitivity in Insects and Application in Integrated Pest Management. Boulder, CO: Westview Press, 1998: 1-5.
[2] Bale J S, Hayward S A L. Insect overwintering in a changing climate. The Journal of Experimental Biology, 2010, 213: 980-994.
[3] Fields P G. The control of stored-product insects and mites with extreme temperatures. Journal of Stored Products Research, 1992, 28(2): 89-118.
[4] Mourier H, Poulsen K P. Control of insects and mites in grain using a high temperature/short time (HTST) technique. Journal of Stored Products Research, 2000, 36: 309-318.
[5] Denlinger D L, Yocum G D. Physiology of heat sensitivity// Hallman G J, Denlinger D L. Temperature Sensitivity in Insects and Application in Integrated Pest Management. Boulder, CO: Westview Press, 1998: 11-18.
[6] Rinehart J R, Yocum G D, Denlinger D L. Thermotolerance and rapid cold hardening ameliorate the negative effects of brief exposures to high or low temperatures on fecundity in the flesh fly, Sarcophaga crassipalpis. Physiological Entomology, 2000, 25: 330-336.
[7] Gullan P J, Cranston P S. The Insects: An Outline of Entomology. 3rd ed. Davis, USA: Blackwell Publishing Ltd., 2005.
[8] 戴秀玉, 程苹, 周坚, 江慧修. 海藻糖的生理功能、分子生物学研究及应用前景. 微生物学通报, 1995, 22(2): 102-103.
Dai X Y, Cheng P, Zhou J, Jiang H X. Physiological function, molecular biology and applications of trehalose. Microbiology Bulletin, 1995, 22(2): 102-103. (in Chinese)
[9] 聂凌鸿, 宁正祥. 海藻糖的生物保护作用. 生命的化学, 2001, 21(3): 206-209.
Nie L H, Ning Z X. Biological protective function of the trehalose. Chemistry of Life, 2001, 21(3): 206-209. (in Chinese)
[10] Crowe J, Crowe L, Chapman D. Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science, 1984, 223(4637): 701-703.
[11] Salvucci M E, Hendrix D L, Wolfe G R. Effect of high temperature on the metabolic processes affecting sorbitol synthesis in the silverleaf whitefly, Bemisia argentifolii. Journal of Insect Physiology, 1999, 45(1): 21-27.
[12] Salvucci M E, Stecher D S, Henneberry T J. Heat shock proteins in whiteflies, an insect that accumulates sorbitol in response to heat stress. Journal of Thermal Biology, 2000, 25: 363-371.
[13] Hendrix D L, Salvucci M E. Polyol metabolism in homopterans at high temperatures: accumulation of mannitol in aphids (Aphididae: Homoptera) and sorbitol in whiteflies (Aleyrodidae: Homoptera). Comparative Biochemistry and Physiology, A, 1998, 120(3): 487-494.
[14] Kirk W D J, Terry L I. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agricultural and Forest Entomology, 2003, 5: 301-310.
[15] Childers C C, Achors D S. Thrips feeding and oviposition injuries to economic plants, subsequent damage and host response to infestation//Parker B L, Skinner M, Lewis T. Thrips Biology and Management. New York and London: Plenum Press, 1995: 31-50.
[16] 周永丰, 唐峻岭. 高温对南美斑潜蝇的致死作用. 昆虫知识, 2003, 40(4): 372-373.
Zhou Y F, Tang J L. Lethal effect of high temperature on the leafminer fly, Liriomyza huidobrensis in a greenhouse. Entomological knowledge, 2003, 40(4): 372-373. (in Chinese)
[17] 杜尧. 高温模式对麦蚜实验种群影响的生态机制研究[D]. 北京: 中国农业科学院, 2007.
DU Y. Ecological mechanism of effects of high temperature patterns on laboratory population of cereal aphid[D]. Beijing: Chinese Academy of Agricultural Sciences, 2007. (in Chinese)
[18] Yoder J A, Chambers M J, Tank J L, Keeney G D. High temperature effects on water loss and survival examining the hardiness of female adults of the spider beetles, Mezium affine and Gibbium aequinoetiale. Journal of Insect Science, 2009, 9: Article 68.
[19] Chown S L, Nicholson S W. Insect Physiological Ecology: Mechanisms and Patterns. New York: Oxford Press, 2004.
[20] Robertson R M. Modulation of neural circuit operation by prior environmental stress. Integrative and Comparative Biology, 2004, 44(1): 21-27.
[21] Chown S L, Terblanche J S. Physiological diversity in insects: Ecological and evolutionary contexts. Advances in Insect Physiology, 2006, 33: 50-152.
[22] Rinehart J R, Yocum G D, Denlinger D L. Thermotolerance and rapid cold hardening ameliorate the negative effects of brief exposures to high or low temperatures on fecundity in the flesh fly, Sarcophaga crassipalpis. Physiological Entomology, 2000, 25: 330-336.
[23] Drost Y C, van Lenteren J C, van Roermund H J W. Life-history parameters of Bemisia tabaci (Hemiptera: Aleyrodidae) in relation to temperature and host plant: a selective review.Bulletin of Entomological Research, 1998, 88(3): 219-229.
[24] 刘芸, 阮传清, 刘波, 朱育菁. 温度对小菜蛾成虫繁殖和寿命的影响. 中国农学通报, 2013, 29(12): 190-193.
Liu Y, Ruan C Q, Liu B, Zhu Y J. Effects of temperature on oviposition and longevity of adult diamondback moth (Plutella xylostella L.). Chinese Agricultural Science Bulletin, 2013, 29(12): 190-193. (in Chinese)
[25] Wang J C, Zhang B, Wang J P, Li H G, Wang S F, Sun L J, Zheng C Y. Effects of heat stress on survival of Frankliniella occidentalis (Thysanptera: Thripidae) and Thrips tabaci (Thysanoptera: Thripidae). Journal of Economic Entomology, 2014, 107(4): 1426-1433.
[26] Mironidis G K, Savopoulou-Soultani M. Effects of heat shock on survival and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) adults. Journal of Thermal Biology, 2010, 35: 59-69.
[27] 朱绍光, 李照会, 万方浩. 短时高温暴露对Q型烟粉虱存活和生殖适应性的影响. 昆虫知识, 2010, 47(6): 1141-1144.
Zhu S G, Li Z H, Wan F H. Effects of brief exposure to high temperature on survival and reproductive adaptation of Bemisia tabaci Q-biotype. Chinese Bulletin of Entomology, 2010, 47(6): 1141-1144. (in Chinese)
[28] 崔旭红, 谢明, 万方浩. 短时高温暴露对B型烟粉虱和温室白粉虱存活以及生殖适应性的影响. 中国农业科学, 2008, 41(2): 424-430.
Cui X H, Xie M, Wan F H. Effects of brief exposure to high temperature on survival and fecundity of two whitefly species: Bemisia tabaci B-biotype and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Scientia Agricultura Sinica, 2008, 41(2): 424-430. (in Chinese)
[29] Ma C S, Hau B, Poehling B H. Effects of pattern and timing of high temperature exposure on reproduction of the rose grain aphid, Metopolophium dirhodum. Entomologia Experimentalis et Applicata, 2004, 110: 65-71.
[30] Mahroof R, Zhu K Y, Subramanyam b. Changes in expression of heat shock proteins in Tribolium castaneum (Coleoptera: Tenebrionidae) in relation to developmental stage, exposure time, and temperature. Annals of the Entomological Society of America, 2005, 98(1): 100-107.
[31] Cui X, Wan F H, Xie M, Liu T X. Effects of heat shock on survival and reproduction of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B. Journal of Insect Science , 2008, 8(24): Article 24.
[32] Scott M, Berrigan D, Hoffmann A A. Costs and benefits of acclimation to elevated temperature in Trichogramma carverae. Entomologia Experimentalis et Applicata, 1997, 85: 211-219.
[33] 赵鑫, 傅建炜, 万方浩, 郭建英, 王进军. 短时高温暴露对莲草直胸跳甲生殖特性的影响. 昆虫学报, 2009, 52(10): 1110-1114.
Zhao X, Fu J W, Wan F H, Guo J Y, Wang J J. Effect of brief high temperature exposure on reproduction characteristics of Agasicles hygrophila (Coleoptera: Chrysomelidae). Acta Entomologica Sinica, 2009, 52(10): 1110-1114. (in Chinese)
[34] Enkegaard A. Encarsia formosa parasitizing the poinsettia-strain of the cotton whitefly, Bemisia tabaci, on poinsettia: bionomics in relation to temperature. Entomologia Experimentalis et Applicata, 1993, 69(3): 251-261.
[35] Chown S L, Sorensen J G, Terblanche J S. Water loss in insects: An environmental change perspective. Journal of Insect Physiology, 2011, 57(8): 1070-1084. |