Please wait a minute...
Journal of Integrative Agriculture  2017, Vol. 16 Issue (09): 1978-1899    DOI: 10.1016/S2095-3119(16)61572-1
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Effect of continuous negative pressure water supply on the growth, development and physiological mechanism of Capsicum annuum L.
LI Di1, LONG Huai-yu2, ZHANG Shu-xiang2, WU Xue-ping2, SHAO Hong-ying1, WANG Peng1
1 Agronomy College, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R.China
2 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Effects of continuous negative pressure water supply on water consumption, growth and development, as well as physiological mechanism and quality of Capsicum annuum L. were investigated in this paper.  Meanwhile, the optimal negative pressure water supply conditions for growth of C. annuum L. were screened out to achieve the goals of water conservation, high yield and high quality, thus providing theoretical foundation for its field production.  The pot experiment within the greenhouse was utilized; the continuous negative pressure water supply was adopted; the four treatments, artificial watering (CK), –5 kPa (T1), –10 kPa (T2), and –15 kPa (T3) were set; and the daily water consumption, yield, as well as the biomass, nitrate reductase, root activity, vitamin C, capsaicin, and nutrient uptakes of nitrogen (N), phosphorus (P) and potassium (K) during various stages of its growth were determined.  Compared with CK, when the water supply pressure was controlled at –5 to –15 kPa in the experiment, the total water consumption of C. annuum L. reduced by 53.42 to 67.75%, the total water consumption intensity reduced by 54.29 to 67.14%, and the water use efficiency increased by 12.66 to 124.67%.  The N accumulation in a single strain of C. annuum L. from the color turning stage to the red ripe stage increased by 15.99 to 100.55%, respectively, compared with that of CK; the P accumulation increased by 20.47 to 154.00% relative to that of CK, and the K accumulation increased by 64.92 to 144.9% compared with that of CK.  Compared with CK, C. annuum L. yield was remarkably improved by 13.79% at T1, and contents of vitamin C, capsaicin as well as carotenoids at all growth stages were enhanced by 13.42–147.01%, 11.54–71.01%, and 41.1–568.06%, respectively.  Nitrate reductase activity, root activity and chlorophyll (a+b) were markedly increased by 335.78–500%, 79.6–140.68% and 114.95–676.19%, respectively, from immature stage to full ripe stage.  Adopting the continuous negative pressure water supply for C. annuum L. has a significant water-saving effect, and the water supply pressure being stable at –5 kPa contributes to its growth and development, improves yield, enhances root activity, promotes nutrient uptake, and improves its quality, thus achieving the effects of water conservation, high yield, high quality and high efficiency.
Keywords:  negative pressure water supply        Capsicum annuum L.        physiological indexes       yield        quality  
Received: 16 October 2016   Accepted:
Fund: 

The research was supported by the National High-Technology Research and Development Program of China (863 Program, 2013AA102900-3).

Corresponding Authors:  Correspondence WANG Peng, E-mail: wangp.ycs@163.com   
About author:  LI Di, E-mail: 461711448@qq.com;

Cite this article: 

LI Di, LONG Huai-yu, ZHANG Shu-xiang, WU Xue-ping, SHAO Hong-ying, WANG Peng. 2017. Effect of continuous negative pressure water supply on the growth, development and physiological mechanism of Capsicum annuum L.. Journal of Integrative Agriculture, 16(09): 1978-1899.

Adiku S, Renger M, Wessolek G, Facklam M, Hecht-Bucholtz C. 2001. Simulation of the dry matter production and seed yield of common beansunder varying soil water and salinity conditions. Agricultural Water Management, 47, 55–68.

Ashraf M, Foolad M R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance.Environmental and Experimental Botany, 59, 206–216.

Bai B Z, Tang X J. 1993. Plant Physiological Experiment Technology. Science and Technology of China Press. (in Chinese)

Bao S D, Qin H Y, Shi R H. 1997. Soil Agrochemical Analysis. 3rd ed. China Agriculture Press, China. (in Chinese)

Chang F C, Lu C M, Sha S. 2008. Plant Biological Experiment. Nanjing Normal University Press, China. (in Chinese)

Chen P, Du T S, Wang F, Dong P G. 2009. Response of yield and quality of hot pepper in greenhouse to irrigation control at different stages in arid Northwest China. Scientia Agricultura Sinica, 9, 3203–3208. (in Chinese)

Flexas J, Galmes J, Ribas-Carbo M, Medrano H. 2005. The effects of water stress on plant respiration. In: Lambers H, Ribas-Carbo M, eds, Plant Respiration. Springer, Dordrecht, The Netherlands. pp. 85–94.

Geng W, Wan K J, Xue X Z, Wang Z M. 2006. Variation of some physiological parameters under negative pressure water supply in spinach. System Sciences & Comprehensive Studies in Agriculture, 4, 248-252. (in Chinese)

Geng W, Wan K J, Xue X Z, Wang W G. 2007. Photosynthetic physiology of the leaves of pot soybean under negative pressure water supply. Water Saving Irrigation, 1, 5–12. (in Chinese)

Hu W H, Chen C X, Hu X H, Li G Y. 2008. Effect of drought stress on morphological plasticity and water retention in two pepper cultivars. Acta Agricultural Universitatis Jiangxiensis, 30, 643–647. (in Chinese)

Kato Z, Tejima S. 1982. Theory and fundamental studies on subsurface method by use of negative pressure: Experimental studies on the subsurface irrigation method (I). Transactions of the Japanese Society of Irrigation Drainage & Reclamation Engineering, 101, 46-54. (in Japanese)

Kulkarni M, Phalke S. 2009. Evaluating variability of root size system and its constitutive traits in hot pepper (Capsicum annum L.) under water stress. Scientia Horticulturae, 120, 159-166.

Li S, Geng W, Xue X Z. Guo W S. 2008. Transpiration rule of tomato under negative pressure automatic irrigation in the sunlight greenhouse. Water Saving Irrigation, 1, 25–28. (in Chinese)

Li S, Xue X Z, Guo W S, Li X, Chen F. 2008. Research and application of the negative pressure water supply control pot device and irrigation system. Journal of Shanghai Jiaotong University, 26, 478–482. (in Chinese)

Liang J T, Sun X H, Xiao J. 2011. Influence of soil texture and water-supply head on soil water transportation under negative pressure irrigation. Water Saving Irrigation, 6, 30–33. (in Chinese)

Liu M C. 2001. Construction and application of the vegetable farming system under negative pressure automatic irrigation. Ph D thesis, Chinese Academy of Agricultural Science. Beijing. (in Chinese)

Liu M C, Tanaka A, Tanaka M. 2000a. Application of porous ceramic pipesin vegetable cultivation (part 1) - Developm ent of auto-controlled irrigation system with negative pressure. Journal of Society of High Technology in Agriculture, 12, 182-189. (in Japanese)

Liu M C, Tanaka M, Tanaka A, Chen D K, Kojima T. 2000b. Application of porous ceramic pipesin vegetable cultivation (part 2) - Controlling soil temperature by circulating warm water in a buried porous ceramic pipeline. Journal of Society of High Technology in Agriculture, 12, 232-241. (in Japanese)

Livingston B E. 1908. A method of controlling plant moisture. Plant World, 11, 39-40.

Ou L J, Chen B, Zou X X. 2012. Effects of drought stress on photosynthesis and associated physiological characters of pepper. Acta Ecologica Sinica, 32, 2612–2619. (in Chinese)

Peng Q, Liang Y L, Chen C, Jia W Y, Tian Z G, Hao W L, Wu X. 2010. Response of physiological characteristics of pepper leaf to different light intensities and soil moisture contents. Transactions of the Chinese Society of Agricultural Engineering, 26(Supp.1), 115–121. (in Chinese)

Peng Q, Tong J H, Bai L Y, Xiao L T. 2015. Effect of drought stress on capsaicin contents, dihydrocapsaicin and vitamin C in pepper (Capsicum frutescens L.) fruit. China Vegetables, 12, 44–47. (in Chinese)

Poorter H, Niinemets Ü, Poorter L, Wright I J, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA), a meta-analysis. New Phytologist, 182, 565–588.

Richard L A, Loomis W E. 1942. Limitation of auto-irrigations for controlling soil moisture under growing plant. Plant Physiology, 17, 223-235.

Shock C C, Feibert E B G, Saunders L, Klauzer J. 2007. Deficit irrigation for optimum alfalfa seed yield and quality. Agronomy Journal, 99, 992–998.

Song Z R, Liu M Y, Liu X G. 2002. Effects of drought stress on physiological function of hot pepper in its different growth and development stages. Hunan Agricultural Sciences, 2, 14–16. (in Chinese)

Sun J S, Kang S Z, Cai H J, Hu X T. 2001. Review on research progress of controlled alternate irrigation techniques. Transactions of the Chinese Society of Agricultural Engineering, 17, 1–5. (in Chinese)

Szira F, Balint A F, Bonnet A, Galiba G. 2008. Evaluation of drought related traits and screening methods at different developmental stages in spring barley. Journal of Agronomy and Crop Science, 194, 334–342.

Wang Y F, Sun D M, Li Q P, Ye H C. 2003. Effect of irrigation and nitrogen dosage interaction on the nutrient content, yield, quality and nitrogen utility efficiency of the flue-cured tobacco leaves. Journal of Henan Agricultural University, 37, 119–123. (in Chinese)

Xiao H Q, Liu X Y, Long H Y, Yang H Q, Zhao B D, Guan N S, Wang D H, Yue X L. 2015. The effects of soil water potential on the growth and water consumption of flue-cured tobacco. Chinese Tobacco Science, 36, 35–41. (in Chinese)

Xu G P, Wang P, Xue X Z, Zhang F, Chen F. 2014. Pot experiment on the water utility efficiency and yield of various types of corn plants under negative pressure water supply control. Agricultural Engineering Journal, 15, 148–156. (in Chinese)

Yang Y Z, Pu Y M, Gong Z H. 1990. Determination of capsaicin in the C. annuum L. fruit. Chinese Vegetables, 12, 44–45. (in Chinese)

Zhao X M, Jiang Y, Wu Y P, Liu K, Zhang Z Q. 2006. Determining method of vitamin C content in fruit and vegetables. Food Science, 3, 197–199. (in Chinese)

Zhou S, Zheng X M. 1985. Discussion on the in vivo analytical method of nitrate reductase. Plant Physiology Communications, 1, 47–49. (in Chinese)

Zobel R W. 2003. Sensitivity analysis of computer-based diameter measurement from digital images. Crop Science, 43, 583–591.

Zou C W, Xue X Z, Zhang R D, Geng W, Li S, Chen F. 2007. Principle and device of negative water pressure irrigation. Agricultural Engineering Journal, 23, 17–22. (in Chinese)
[1] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[2] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[3] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[4] Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2989-3003.
[5] Ziqiang Che, Shuting Bie, Rongrong Wang, Yilin Ma, Yaoyuan Zhang, Fangfang He, Guiying Jiang. Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2954-2973.
[6] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[7] Kuanyu Zhu, Yuemei Xu, Zhiwei Sun, Yajun Zhang, Weiyang Zhang, Yunji Xu, Junfei Gu, Hao Zhang, Zhiqin Wang, Lijun Liu, Jianhua Zhang, Jianchang Yang. Post-anthesis dry matter production and leaf nitrogen distribution are associated with root-derived cytokinins gradient in rice[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2106-2122.
[8] Jiaying Ma, Jian Liu, Yue Wen, Zhanli Ma, Jinzhu Zhang, Feihu Yin, Tehseen Javed, Jihong Zhang, Zhenhua Wang. Enhancing the yield and water use efficiency of processing tomatoes (Lycopersicon esculentum Miller) through optimal irrigation and salinity management under mulched drip irrigation[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2410-2424.
[9] Xiaoqiang Liu, Mingqi Li, Dong Xue, Shuai He, Junliang Fan, Fucang Zhang, Feihu Yin. Optimal drip irrigation leaching amount and timing enhanced cotton fiber yield, quality and nitrogen uptake by regulating soil salinity and nitrate nitrogen in saline-alkaline fields[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2389-2409.
[10] Liang Wang, Nijiang Ai, Zechang Zhang, Chenhui Zhou, Guoli Feng, Sheng Cai, Ningshan Wang, Liuchun Feng, Yu Chen, Min Xu, Yingying Wang, Haoran Yue, Mengfei Chen, Liangshuai Xing, Baoliang Zhou. Development of Gossypium hirsutumGossypium raimondii introgression lines and their use in QTL mapping of agricultural traits[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1688-1703.
[11] Zhaowen Mo, Siren Cheng, Yong Ren, Longxin He, Shenggang Pan, Haidong Liu, Hua Tian, Umair Ashraf, Meiyang Duan, Xiangru Tang. Reduced tillage coupled with straw return improves the grain yield and 2-acetyl-1-pyrroline content in fragrant rice[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1718-1737.
[12] Mengyan Cao, Shaoping Ye, Cheng Jin, Junkang Cheng, Yao Xiang, Yu Song, Guorong Xin, Chuntao He. The communities of arbuscular mycorrhizal fungi established by different winter green manures in paddy fields promote post-cropping rice production[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1588-1605.
[13] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[14] Jia Wu, Luqi Zhang, Ziyi Wang, Fan Ge, Hao Zhang, Jianchang Yang, Yajie Zhang. Reasonable dry cultivation methods can balance the yield and grain quality of rice[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1030-1043.
[15] Qingyun Tang, Guodong Wang, Lei Zhao, Zhiwen Song, Yuxiang Li.
Responses of yield, root traits and their plasticity to the nitrogen environment in nitrogen-efficient cultivars of drip-irrigated rice
[J]. >Journal of Integrative Agriculture, 2025, 24(2): 480-496.
No Suggested Reading articles found!