? Effect of continuous negative pressure water supply on the growth, development and physiological mechanism of <em>Capsicum annuum</em> L.
Quick Search in JIA      Advanced Search  
    2017, Vol. 16 Issue (09): 1978-1899     DOI: 10.1016/S2095-3119(16)61572-1
Horticulture Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Effect of continuous negative pressure water supply on the growth, development and physiological mechanism of Capsicum annuum L.
LI Di1, LONG Huai-yu2, ZHANG Shu-xiang2, WU Xue-ping2, SHAO Hong-ying1, WANG Peng1
1 Agronomy College, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R.China
2 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
 Download: PDF in ScienceDirect (0 KB)   HTML (1 KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Effects of continuous negative pressure water supply on water consumption, growth and development, as well as physiological mechanism and quality of Capsicum annuum L. were investigated in this paper.  Meanwhile, the optimal negative pressure water supply conditions for growth of C. annuum L. were screened out to achieve the goals of water conservation, high yield and high quality, thus providing theoretical foundation for its field production.  The pot experiment within the greenhouse was utilized; the continuous negative pressure water supply was adopted; the four treatments, artificial watering (CK), –5 kPa (T1), –10 kPa (T2), and –15 kPa (T3) were set; and the daily water consumption, yield, as well as the biomass, nitrate reductase, root activity, vitamin C, capsaicin, and nutrient uptakes of nitrogen (N), phosphorus (P) and potassium (K) during various stages of its growth were determined.  Compared with CK, when the water supply pressure was controlled at –5 to –15 kPa in the experiment, the total water consumption of C. annuum L. reduced by 53.42 to 67.75%, the total water consumption intensity reduced by 54.29 to 67.14%, and the water use efficiency increased by 12.66 to 124.67%.  The N accumulation in a single strain of C. annuum L. from the color turning stage to the red ripe stage increased by 15.99 to 100.55%, respectively, compared with that of CK; the P accumulation increased by 20.47 to 154.00% relative to that of CK, and the K accumulation increased by 64.92 to 144.9% compared with that of CK.  Compared with CK, C. annuum L. yield was remarkably improved by 13.79% at T1, and contents of vitamin C, capsaicin as well as carotenoids at all growth stages were enhanced by 13.42–147.01%, 11.54–71.01%, and 41.1–568.06%, respectively.  Nitrate reductase activity, root activity and chlorophyll (a+b) were markedly increased by 335.78–500%, 79.6–140.68% and 114.95–676.19%, respectively, from immature stage to full ripe stage.  Adopting the continuous negative pressure water supply for C. annuum L. has a significant water-saving effect, and the water supply pressure being stable at –5 kPa contributes to its growth and development, improves yield, enhances root activity, promotes nutrient uptake, and improves its quality, thus achieving the effects of water conservation, high yield, high quality and high efficiency.
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Key wordsnegative pressure water supply     Capsicum annuum L.     physiological indexes    yield     quality     
Received: 2016-10-16; Published: 2016-12-19

The research was supported by the National High-Technology Research and Development Program of China (863 Program, 2013AA102900-3).

Corresponding Authors: Correspondence WANG Peng, E-mail: wangp.ycs@163.com   
About author: LI Di, E-mail: 461711448@qq.com;
Cite this article:   
. Effect of continuous negative pressure water supply on the growth, development and physiological mechanism of Capsicum annuum L.[J]. Journal of Integrative Agriculture, 2017, 16(09): 1978-1899.
http://www.chinaagrisci.com/Jwk_zgnykxen/EN/10.1016/S2095-3119(16)61572-1      or     http://www.chinaagrisci.com/Jwk_zgnykxen/EN/Y2017/V16/I09/1978
[1] Adiku S, Renger M, Wessolek G, Facklam M, Hecht-Bucholtz C. 2001. Simulation of the dry matter production and seed yield of common beansunder varying soil water and salinity conditions. Agricultural Water Management, 47, 55-68.
[2] Ashraf M, Foolad M R. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance.Environmental and Experimental Botany, 59, 206-216.
[3] Bai B Z, Tang X J. 1993. Plant Physiological Experiment Technology. Science and Technology of China Press. (in Chinese)
[4] Bao S D, Qin H Y, Shi R H. 1997. Soil Agrochemical Analysis. 3rd ed. China Agriculture Press, China. (in Chinese)
[5] Chang F C, Lu C M, Sha S. 2008. Plant Biological Experiment. Nanjing Normal University Press, China. (in Chinese)
[6] Chen P, Du T S, Wang F, Dong P G. 2009. Response of yield and quality of hot pepper in greenhouse to irrigation control at different stages in arid Northwest China. Scientia Agricultura Sinica, 9, 3203-3208. (in Chinese)
[7] Flexas J, Galmes J, Ribas-Carbo M, Medrano H. 2005. The effects of water stress on plant respiration. In: Lambers H, Ribas-Carbo M, eds, Plant Respiration. Springer, Dordrecht, The Netherlands. pp. 85-94.
[8] Geng W, Wan K J, Xue X Z, Wang Z M. 2006. Variation of some physiological parameters under negative pressure water supply in spinach. System Sciences & Comprehensive Studies in Agriculture, 4, 248-252. (in Chinese)
[9] Geng W, Wan K J, Xue X Z, Wang W G. 2007. Photosynthetic physiology of the leaves of pot soybean under negative pressure water supply. Water Saving Irrigation, 1, 5-12. (in Chinese)
[10] Hu W H, Chen C X, Hu X H, Li G Y. 2008. Effect of drought stress on morphological plasticity and water retention in two pepper cultivars. Acta Agricultural Universitatis Jiangxiensis, 30, 643-647. (in Chinese)
[11] Kato Z, Tejima S. 1982. Theory and fundamental studies on subsurface method by use of negative pressure: Experimental studies on the subsurface irrigation method (I). Transactions of the Japanese Society of Irrigation Drainage & Reclamation Engineering, 101, 46-54. (in Japanese)
[12] Kulkarni M, Phalke S. 2009. Evaluating variability of root size system and its constitutive traits in hot pepper (Capsicum annum L.) under water stress. Scientia Horticulturae, 120, 159-166.
[13] Li S, Geng W, Xue X Z. Guo W S. 2008. Transpiration rule of tomato under negative pressure automatic irrigation in the sunlight greenhouse. Water Saving Irrigation, 1, 25-28. (in Chinese)
[14] Li S, Xue X Z, Guo W S, Li X, Chen F. 2008. Research and application of the negative pressure water supply control pot device and irrigation system. Journal of Shanghai Jiaotong University, 26, 478-482. (in Chinese)
[15] Liang J T, Sun X H, Xiao J. 2011. Influence of soil texture and water-supply head on soil water transportation under negative pressure irrigation. Water Saving Irrigation, 6, 30-33. (in Chinese)
[16] Liu M C. 2001. Construction and application of the vegetable farming system under negative pressure automatic irrigation. Ph D thesis, Chinese Academy of Agricultural Science. Beijing. (in Chinese)
[17] Liu M C, Tanaka A, Tanaka M. 2000a. Application of porous ceramic pipesin vegetable cultivation (part 1) - Developm ent of auto-controlled irrigation system with negative pressure. Journal of Society of High Technology in Agriculture, 12, 182-189. (in Japanese)
[18] Liu M C, Tanaka M, Tanaka A, Chen D K, Kojima T. 2000b. Application of porous ceramic pipesin vegetable cultivation (part 2) - Controlling soil temperature by circulating warm water in a buried porous ceramic pipeline. Journal of Society of High Technology in Agriculture, 12, 232-241. (in Japanese)
[19] Livingston B E. 1908. A method of controlling plant moisture. Plant World, 11, 39-40.
[20] Ou L J, Chen B, Zou X X. 2012. Effects of drought stress on photosynthesis and associated physiological characters of pepper. Acta Ecologica Sinica, 32, 2612-2619. (in Chinese)
[21] Peng Q, Liang Y L, Chen C, Jia W Y, Tian Z G, Hao W L, Wu X. 2010. Response of physiological characteristics of pepper leaf to different light intensities and soil moisture contents. Transactions of the Chinese Society of Agricultural Engineering, 26(Supp.1), 115-121. (in Chinese)
[22] Peng Q, Tong J H, Bai L Y, Xiao L T. 2015. Effect of drought stress on capsaicin contents, dihydrocapsaicin and vitamin C in pepper (Capsicum frutescens L.) fruit. China Vegetables, 12, 44-47. (in Chinese)
[23] Poorter H, Niinemets Ü, Poorter L, Wright I J, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA), a meta-analysis. New Phytologist, 182, 565-588.
[24] Richard L A, Loomis W E. 1942. Limitation of auto-irrigations for controlling soil moisture under growing plant. Plant Physiology, 17, 223-235.
[25] Shock C C, Feibert E B G, Saunders L, Klauzer J. 2007. Deficit irrigation for optimum alfalfa seed yield and quality. Agronomy Journal, 99, 992-998.
[26] Song Z R, Liu M Y, Liu X G. 2002. Effects of drought stress on physiological function of hot pepper in its different growth and development stages. Hunan Agricultural Sciences, 2, 14-16. (in Chinese)
[27] Sun J S, Kang S Z, Cai H J, Hu X T. 2001. Review on research progress of controlled alternate irrigation techniques. Transactions of the Chinese Society of Agricultural Engineering, 17, 1-5. (in Chinese)
[28] Szira F, Balint A F, Bonnet A, Galiba G. 2008. Evaluation of drought related traits and screening methods at different developmental stages in spring barley. Journal of Agronomy and Crop Science, 194, 334-342.
[29] Wang Y F, Sun D M, Li Q P, Ye H C. 2003. Effect of irrigation and nitrogen dosage interaction on the nutrient content, yield, quality and nitrogen utility efficiency of the flue-cured tobacco leaves. Journal of Henan Agricultural University, 37, 119-123. (in Chinese)
[30] Xiao H Q, Liu X Y, Long H Y, Yang H Q, Zhao B D, Guan N S, Wang D H, Yue X L. 2015. The effects of soil water potential on the growth and water consumption of flue-cured tobacco. Chinese Tobacco Science, 36, 35-41. (in Chinese)
[31] Xu G P, Wang P, Xue X Z, Zhang F, Chen F. 2014. Pot experiment on the water utility efficiency and yield of various types of corn plants under negative pressure water supply control. Agricultural Engineering Journal, 15, 148-156. (in Chinese)
[32] Yang Y Z, Pu Y M, Gong Z H. 1990. Determination of capsaicin in the C. annuum L. fruit. Chinese Vegetables, 12, 44-45. (in Chinese)
[33] Zhao X M, Jiang Y, Wu Y P, Liu K, Zhang Z Q. 2006. Determining method of vitamin C content in fruit and vegetables. Food Science, 3, 197-199. (in Chinese)
[34] Zhou S, Zheng X M. 1985. Discussion on the in vivo analytical method of nitrate reductase. Plant Physiology Communications, 1, 47-49. (in Chinese)
[35] Zobel R W. 2003. Sensitivity analysis of computer-based diameter measurement from digital images. Crop Science, 43, 583-591.
[36] Zou C W, Xue X Z, Zhang R D, Geng W, Li S, Chen F. 2007. Principle and device of negative water pressure irrigation. Agricultural Engineering Journal, 23, 17-22. (in Chinese)
No Similar of article
Copyright © 2015 ChinaAgriSci.com, All Rights Reserved
Chinese Academy of Agricultural Sciences (CAAS) No. 12 South Street, Zhongguancun, Beijing 100081, P. R. China
http://www.ChinaAgriSci.com   JIA E-mail: jia_journal@caas.cn