昆虫分子生物与功能基因Insect molecular biology
Cylas formicarius is one of the most important pests of sweet potato worldwide, causing considerable ecological and economic damage. This study improved the effect of comprehensive management and understanding of genetic mechanisms by examining the functional genomics of C. formicarius. Using Illumina and PacBio sequencing, this study obtained a chromosome-level genome assembly of adult weevils from lines inbred for 15 generations. The high-quality assembly obtained was 338.84 Mb, with contig and scaffold N50 values of 14.97 and 34.23 Mb, respectively. In total, 157.51 Mb of repeat sequences and 11 907 protein-coding genes were predicted. A total of 337.06 Mb of genomic sequences was located on the 11 chromosomes, accounting for 99.03% of the total length of the associated chromosome. Comparative genomic analysis showed that C. formicarius was sister to Dendroctonus ponderosae, and C. formicarius diverged from D. ponderosae approximately 138.89 million years ago (Mya). Many important gene families expanded in the C. formicarius genome were involved in the detoxification of pesticides, tolerance to cold stress and chemosensory system. To further study the role of odorant-binding proteins (OBPs) in olfactory recognition of C. formicarius, the binding assay results indicated that CforOBP4–6 had strong binding affinities for sex pheromones and other ligands. The high-quality C. formicarius genome provides a valuable resource to reveal the molecular ecological basis, genetic mechanism, and evolutionary process of major agricultural pests; it also offers new ideas and new technologies for ecologically sustainable pest control.
Genetic control strategies such as the sterile insect technique have successfully fought insect pests worldwide. The CRISPR (clustered regularly interspaced short palindromic repeats) technology, together with high-quality genomic resources obtained in more and more species, greatly facilitates the development of novel genetic control insect strains that can be used in area-wide and species-specific pest control programs. Here, we review the research progress towards state-of-art CRISPR-based genetic control strategies, including gene drive, sex ratio distortion, CRISPR-engineered genetic sexing strains, and precision-guided sterile insect technique. These strategies’ working mechanisms, potential resistance development mechanisms, and regulations are illustrated and discussed. In addition, recent developments such as stacked and conditional systems are introduced. We envision that the advances in genetic technology will continue to be one of the driving forces for developing the next generation of pest control strategies.
Chemosensory proteins (CSPs) perform several functions in insects. This study performed the gene expression, ligand-binding, and molecular docking assays on the EforCSP3 identified in the parasitoid wasp Encarsia formosa, to determine whether EforCSP3 functions in olfaction, especially in host location and host preference. The results showed that EforCSP3 was highly expressed in the female head, and its relative expression was much higher in adults than in other developmental stages. The fluorescence binding assays suggested that the EforCSP3 exhibited high binding affinities to a wide range of host-related volatiles, among which dibutyl phthalate, 1-octene, β-elemene, and tridecane had the strongest binding affinity with EforCSP3, besides α-humulene and β-myrcene, and should be assessed as potential attractants. Protein structure modeling and molecular docking predicted the amino acid residues of EforCSP3 possibly involved in volatile binding. α-Humulene and β-myrcene attracted E. formosa in a previous study and exhibited strong binding affinities with EforCSP3 in the current study. In conclusion, EforCSP3 may be involved in semiochemical reception by E. formosa.
Mutagenesis of odorant coreceptor Orco reveals the distinct role of olfaction between sexes in Spodoptera frugiperda
Odorant receptor (OR) is crucial for insects to detect and recognize external chemical cues closely related to their survival. The insect OR forms a heteromeric complex composed of a ligand-specific receptor and a ubiquitously odorant receptor coreceptor (Orco). This study used the CRISPR/Cas9 technique to knock out (KO) Orco and reveal its essential role in acting on OR-meditated olfactory behavior in a critical invasive agricultural pest, the fall armyworm (FAW), Spodoptera frugiperda. Electroantennogram (EAG) results suggested that the Orco mutants of both male and female moths severely reduced their electrophysiological responses to the eight tested plant volatiles and two sex pheromones. However, the Orco gene played distinct roles in mating behavior between sexes: the mating behavior was fully disrupted in mutated males but not in mutated females. The oviposition result indicated that the Orco KO females displayed reduced egg laying by 24.1% compared with the mated wild type (WT) females. Overall, these results strongly suggest that Orco is an excellent target for disrupting FAW’s normal behavior and provides a feasible pest control approach.
Host-induced silencing of MpPar6 confers Myzus persicae resistance in transgenic rape plants
Plant-mediated RNA interference (RNAi) has emerged as a promising technology for insect control. The green peach aphid, Myzus persicae, feeds on over 400 species of host plants. Brassica napus (rape) is the second most important oilseed crop worldwide. Myzus persicae is highly reproductive and causes severe damage to the rape plants due to its quite flexible life cycle. In this study, we tested the RNAi effects of transgenic rape plants on M. persicae. By in vitro feeding M. persicae with artificial diets containing double-stranded RNAs (dsRNAs) targeting seven aphid genes, we identified a new gene encoding the partitioning-defective protein 6 (Par6) as the most potent RNAi target. Tissue- and stage-expression analysis of Par6 suggested this gene is highly expressed in the embryo and adult stage of M. persicae. We next generated transgenic rape plants expressing dsPar6 by Agrobacterium-mediated transformation and obtained nine independent transgenic lines. Compared to wild-type control plants, transgenic rape lines expressing dsPar6 showed strong resistance to M. persicae. Feeding assays revealed that feeding transgenic rape plants to M. persicae significantly decreased MpPar6 expression and survival rate and impaired fecundity. Furthermore, we showed that the resistance levels to M. persicae are positively correlated with dsPar6 expression levels in transgenic rape plants. Our study demonstrates that transgenic rape plants expressing dsPar6 are efficiently protected from M. persicae. Interfering with the genes involved in embryo development could be the effective RNAi targets for controlling aphids and potentially other insect pests.
Identification of transient receptor potential channel genes and functional characterization of TRPA1 in Spodoptera frugiperda
Spodoptera frugiperda is a highly destructive pest that has become a global problem due to its robust reproductive and migratory capabilities. Transient receptor potential (TRP) channels, which constitute a vast ion channel family, play pivotal roles in sensing the external environment and maintaining internal homeostasis in insects. TRP channels have been widely investigated for their critical roles in regulating various insect behaviors in recent years. In this study, we identified 15 TRP gene loci encoding 26 transcripts in the genome of S. frugiperda and analyzed their expression profiles at different developmental stages. The results revealed that S. frugiperda possesses four TRPC genes, six TRPA genes, one TRPM gene, two TRPV genes, one TRPN gene, and one TRPML gene, while a canonical TRPP is absent. Moreover, the SfruTRPA1 was functionally characterized using the Xenopus oocyte expression system. The results showed that SfruTRPA1 is activated by temperature increases from 20 to 45°C, and there is no significant desensitization after repeated stimuli within the same temperature range. Additionally, SfruTRPA1 is activated by certain natural chemicals, including allyl isothiocyanate (AITC) and cinnamaldehyde (CA). These findings provide valuable insights to the TRP genes in S. frugiperda.
Functional assessment of cadherin as a shared mechanism for cross/dual resistance to Cry1Ac and Cry2Ab in Helicoverpa zea
Helicoverpa zea is a major target pest of pyramided transgenic crops expressing Cry1, Cry2 and/or Vip3Aa proteins from Bacillus thuringiensis (Bt) in the United States. Laboratory-selected Cry1Ac/Cry2Ab cross resistance and field-evolved practical dual resistance of H. zea to these two toxins have been widely reported. Whether the widespread Cry1Ac/Cy2Ab dual resistance of H. zea has resulted from the selection of one shared or two independent resistance mechanisms by pyramided Bt crops remains unclear. Cadherin is a well-confirmed receptor of Cry1Ac and a suggested receptor of Cry2Ab in at least three Lepidopteran species. To test whether cadherin may serve as one shared mechanism for the cross and dual resistance of H. zea to Cry1Ac and Cry2Ab, we cloned H. zea cadherin (HzCadherin) cDNA and studied its functional roles in the mode of action of Cry1Ac and Cry2Ab by gain- and loss-of-function analyses. Heterologous expression of HzCadherin in H. zea midgut, H. zea fat body and Sf9 cells made all three of these cell lines more susceptible to activated Cry1Ac but not activated Cry2Ab, whereas silencing HzCadherin of H. zea midgut and fat body cells significantly reduced the susceptibility to Cry1Ac but not Cry2Ab. Likewise, suppressing HzCadherin with siRNA made H. zea larvae resistant to Cry1Ac. These results clearly demonstrate that HzCadherin is not a receptor for Cry2Ab, and thus it is unlikely to serve as one shared mechanism for the cross and dual resistance of H. zea to Cry1Ac and Cry2Ab.
CRISPR/Cas9-mediated NlInR2 mutants: Analyses of residual mRNA and truncated proteins