Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Vesicular transport-related genes in Diaphorina citri are involved in the process of Candidatus Liberibacter asiaticus infection
Yingzhe Yuan1*, Tao Peng1 2*, Aijun Huang3, Jun He1, Chenyang Yuan4, Tianyuan Liu4, Long Yi3, Xuejin Cui1, Xuefeng Wang1#, Changyong Zhou1#

1 National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China

2 College of Life Sciences, Yulin College, Yulin 719000, China

3 National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China

4 Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  黄龙病是一种由Candidatus Liberibacter asiaticus (CLas) 引起韧皮部寄生的革兰氏阴细菌,主要由亚洲柑橘木虱以持久增殖的方式传播,是柑橘上最具毁灭性的病害。有研究提出黄龙病菌借助木虱细胞内的囊泡结构来复制和传播。然而,黄龙病菌如何进入木虱细胞以及囊泡运输作用在此过程中起到何种作用目前尚不清楚。本研究中我们监测木虱五龄若虫在不同取食时间后体内CLas滴度的变化,结果表明,若虫体内的CLas滴度随着取食时间的延长而增加。在CLas感染的木虱体内囊泡转运相关基因的表达显著上调,当阻断木虱内吞作用和内体网络后,CLas在木虱整虫和中肠的滴度显著下降。此外通过沉默网格蛋白重链基因(dsCHC1)的表达同样导致了柑橘木虱体内CLas滴度的降低。总而言之,我们的结果表明,CLas感染上调了柑橘木虱囊泡运输相关基因的表达从而促进了依赖内吞作用病原菌的入侵

Abstract  Asian citrus psyllid (ACP, Diaphorina citri) is the major vector of Candidatus Liberibacter asiaticus (CLas), which is a bacterial pathogen causing the devastating citrus Huanglongbing (HLB) disease. Diaphorina citri is known to carry CLas in a persistent and propagative manner. Some studies have suggested that CLas may use the vesicular structures of D. citri cells as its propagation organelles. However, the mechanisms by which CLas enters the D. citri cells and how vesicle-mediated trafficking is involved remain unclear. In this study, we monitored the titer change of CLas in D. citri nymphs during the process of CLas acquisition from feeding on infected citrus plants. We found that the titer of CLas increased with the acquisition access period. After infection, there was a significant upregulation in the expression of several vesicular transport-related genes in D. citri. The titer of CLas was significantly reduced in the midgut and whole insect body when endocytosis and the endosome network in D. citri were inhibited. Furthermore, silencing the D. citri clathrin-heavy chain gene also led to a reduction in the CLas titer in D. citri. These results suggest that CLas infection upregulates the genes related to vesicular transport in D. citri, which facilitates the invasion of endocytosis-dependent pathogens.
Keywords:  Huanglongbing       endocytosis              vesicular trafficking              CLas acquisition  
Online: 19 April 2024  
Fund: This study was supported by grants from the National Key Research and Development Program of China (2021YFD1400800), the National Natural Science Foundation of China (U23A0196 and 32160625), the Innovation Research 2035 Pilot Plan of Southwest University, China (SWU-5331000008), the Special Fund for Youth Team of Southwest University, China (SWU-XJLJ202310) and the Science and Technology Project of Jiangxi Province, China (20225BCJ22005). We thank Dr. Fang Ding (Huazhong Agricultural University, China) for providing the antibody of CLas, and Dr. Binghai Lou (Guangxi Academy of Specialty Crops, China) for providing single D. citri DNA extraction methods.
About author:  Yingzhe Yuan, Mobile: +86-13139892967, E-mail: yyz9498@email.swu.edu.cn; Tao Peng, Mobile: +86-15320928375, E-mail: ptky2017@sina.com; #Correspondence Xuefeng Wang, Mobile: +86-15922612339, E-mail: wangxuefeng@cric.cn; Changyong Zhou, E-mail: zhoucy@cric.cn *These authors contributed equally to this study.

Cite this article: 

Yingzhe Yuan, Tao Peng, Aijun Huang, Jun He, Chenyang Yuan, Tianyuan Liu, Long Yi, Xuejin Cui, Xuefeng Wang, Changyong Zhou. 2024. Vesicular transport-related genes in Diaphorina citri are involved in the process of Candidatus Liberibacter asiaticus infection. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.03.063

Ammar E D, Achor D, Levy A. 2019. Immuno-ultrastructural localization and putative multiplication sites of Huanglongbing bacterium in Asian citrus psyllid Diaphorina citri. Insects, 10, 422.

Ammar E D, Ramos J E, Hall D G, Dawson W O, Shatters Jr R G. 2016. Acquisition, replication and inoculation of Candidatus Liberibacter asiaticus following various acquisition periods on Huanglongbing-infected citrus by nymphs and adults of the Asian citrus psyllid. PLoS ONE, 11, e0159594.

Ammar E D, Shatters R G, Hall D G. 2011a. Localization of Candidatus Liberibacter asiaticus, associated with citrus Huanglongbing disease, in its psyllid vector using fluorescence in situ hybridization. Journal of Phytopathology, 159, 726-734.

Ammar E D, Shatters R G, Lynch C, Hall D I G. 2011b. Detection and relative titer of ‘Candidatus Liberibacter asiaticus’ in the salivary glands and alimentary canal of Diaphorina citri (Hemiptera: Psyllidae) vector of citrus Huanglongbing disease. Annals of the Entomological Society of America, 104, 526-533.

Bao M L, Zheng Z, Sun X A, Chen J C, Deng X L. 2020. Enhancing PCR capacity to detect ‘Candidatus Liberibacter asiaticus’ utilizing whole genome sequence information. Plant Disease, 104, 527-532.

Benguettat O, Jneid R, Soltys J, Loudhaief R, Brun-Barale A, Osman D, Gallet A. 2018. The DH31/CGRP enteroendocrine peptide triggers intestinal contractions favoring the elimination of opportunistic bacteria. Plos Pathogens, 14, e1007279.

Bento F M M, Darolt J C, Merlin B L, Pena L, Wulff N A, Consoli F L. 2021. The molecular interplay of the establishment of an infection-gene expression of Diaphorina citri gut and Candidatus Liberibacter asiaticus. BMC Genomics, 22, 677.

Bové J M. 2006. Huanglongbing: A descructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology, 88, 7-37.

Celli J. 2015. The changing nature of the Brucella-containing vacuole. Cellular Microbiology, 17, 951-958.

Celli J. 2019. The intracellular life cycle of Brucella spp. Microbiology Spectrum, 7, BAI-0006-2019.

Chen Q, Li Z Q, Liu S L, Chi Y H, Jia D S, Wei T Y. 2021. Infection and distribution of Candidatus Liberibacter asiaticus in citrus plants and psyllid vectors at the cellular level. Microbial Biotechnology, 15, 1221-1234.

Cicero J M, Fisher T W, Qureshi J A, Stansly P A, Brown J K. 2016. Colonization and intrusive invasion of potato psyllid by ‘Candidatus Liberibacter solanacearum’. Phytopathology, 107, 36-49.

Ghanim M, Achor D, Ghosh S, Kontsedalov S, Lebedev G, Levy A. 2017. ‘Candidatus Liberibacter asiaticus’ accumulates inside endoplasmic reticulum associated vacuoles in the gut cells of Diaphorina citri. Scientific Reports, 7, 16945.

Ghanim M, Fattah-Hosseini S, Levy A, Cilia M. 2016. Morphological abnormalities and cell death in the Asian citrus psyllid (Diaphorina citri) midgut associated with Candidatus Liberibacter asiaticus. Scientific Reports, 6, 33418.

Coletta-Filho H D, Daugherty M P, Ferreira C, Lopes J R S. 2014. Temporal progression of ‘Candidatus Liberibacter asiaticus’ infection in citrus and acquisition efficiency by Diaphorina citri. Phytopathology, 104, 416-421.

Grafton-Cardwell E E, Stelinski L L, Stansly P A. 2013. Biology and management of Asian citrus psyllid, vector of the Huanglongbing pathogens. Annual Review of Entomology, 58, 413–432.

Ding F, Peng S A, Hartung J S. 2020. Enhanced serologically based detection of Liberibacters associated with citrus Huanglongbing. Plant Disease, 104, 1584-1588.

Haapalainen M. 2014. Biology and epidemics of Candidatus Liberibacter species, psyllid-transmitted plant-pathogenic bacteria. Annals of Applied Biology, 165, 172-198.

Hall D G, Richardson M L, Ammar E D, Halbert S E. 2013. Asian citrus psyllid, Diaphorina citri, vector of citrus Huanglongbing disease. Entomologia Experimentalis et Applicata, 146, 207-223.

Hosseinzadeh S, Heck M. 2023. Variations on a theme: Factors regulating interaction between Diaphorina citri and ‘Candidatus Liberibacter asiaticus’ vector and pathogen of citrus Huanglongbing. Current Opinion in Insect Science, 56, 101025.

Hung T H, Hung S C, Chen C N, Hsu M H, Su H J. 2004. Detection by PCR of Candidatus Liberibacter asiaticus, the bacterium causing citrus Huanglongbing invector psyllids: Application to the study of vector-pathogen relationships. Plant Pathology, 53, 96-102.

Inoue H, Ohnishi J, Ito T, Tomimura K, Miyata S, Iwanami T, Ashihara W. 2009. Enhanced proliferation and efficient transmission of Candidatus Liberibacter asiaticus by adult Diaphorina citri after acquisition feeding in the nymphal stage. Annals of Applied Biology, 155, 29-36.

Jaiswal D, Sidharthan V K, Sharma S K, Rai R, Choudhary N, Ghosh A, Baranwal V K. 2021. Candidatus Liberibacter asiaticus manipulates the expression of vitellogenin, cytoskeleton, and endocytotic pathway-related genes to become circulative in its vector, Diaphorina citri (Hemiptera: Psyllidae). 3 Biotech, 11, 88.

Lin C Y, Achor D, Levy A. 2022. Intracellular life cycle of ‘Candidatus Liberibacter asiaticus’ inside psyllid gut cells. Phytopathology, 112, 145-153.

Liu X Q, Jiang H B, Liu T Y, Yang L, Fan J Y, Xiong Y, Jing T X, Lou B H, Dou W, Wang J J. 2020. A transcriptomic and proteomic analysis of the diaphorina citri salivary glands reveals genes responding to Candidatus Liberibacter asiaticus. Frontiers in Physiology, 11, 582505.

Malik H J, Raza A, Amin I, Scheffler J A, Scheffler B E, Brown J K, Mansoor S. 2016. RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants. Scientific Report, 6, 38469.

Mercer J, Schelhaas M, Helenius A. 2010. Virus entry by endocytosis. Annual Review of Biochemistry, 79, 803-833.

Mousavi S A, Malerod L, Berg T, Kjeken R. 2004. Clathrin-dependent endocytosis. Biochemical Journal, 377, 1-16.

Owen D J, Collins B M, Evans P R. 2004. Adaptors for clathrin coats: Structure and function. Annual Review of Cell and Developmental Biology, 20, 153-191.

Pan L L, Chen Q F, Zhao J J, Guo T, Wang X W, Hariton-Shalev A, Czosnek H, Liu S S. 2017. Clathrin-mediated endocytosis is involved in Tomato yellow leaf curl virus transport across the midgut barrier of its whitefly vector. Virology, 502, 152-159.

Pelz-Stelinski K S, Brlansky R H, Ebert T A, Rogers M E. 2010. Transmission parameters for Candidatus Liberibacter asiaticus by Asian citrus psyllid (Hemiptera:Psyllidae). Journal of Economic Entomology, 103, 1531-1541.

Peng T, Yuan Y Z, Huang A J, He J, Fu S M, Duan S, Yi L, Yuan C Y, Yuan H Z, Wang X F, Zhou C Y. 2023. Interaction between the flagellum of Candidatus Liberibacter asiaticus and the vitellogenin-like protein of Diaphorina citri significantly influences CLas titer. Frontiers in Microbiology, 14, 1119619.

Perilla-Henao L M, Casteel C L. 2016. Vector-borne bacterial plant pathogens: Interactions with Hemipteran insects and plants. Frontiers in Plant Science, 7, 1163.

Sarkar P, Kontsedalov S, Lebedev G, Ghanim M. 2020. The actin cytoskeleton mediates transmission of ‘Candidatus Liberibacter solanacearum’ by the carrot psyllid. Applied and Environmental Microbiology, 87, e02393-20.

Vallet-Gely I, Lemaitre B, Boccard F. 2008. Bacterial strategies to overcome insect defences. Nature Reviews Microbiology, 6, 302-313.

Veiga E, Cossart P. 2005. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nature Cell Biology, 7, 894-900.

Veiga E, Cossart P. 2006. The role of clathrin-dependent endocytosis in bacterial internalization. Trends in Cell Biology, 16, 499-504.

Wang L H, Rothberg K G, Anderson R G. 1993. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. The Journal of Cell Biology, 123, 1107-1117.

Wang N, Pierson E A, Setubal J C, Xu J, Levy J G, Zhang Y Z, Li J Y, Rangel L T, Martins J. 2017. The Candidatus Liberibacter-Host Interface: Insights into pathogenesis mechanisms and disease control. Annual Review of Phytopathology, 55, 451-482.

Wu F N, Huang J Q, Xu M R, Fox E G P, Beattie G A C, Holford P, Cen Y J, Deng X L. 2018. Host and environmental factors influencing ‘Candidatus Liberibacter asiaticus’ acquisition in Diaphorina citri. Pest Management Science, 74, 2738-2746.

Xia W Q, Liang Y, Chi Y, Pan L L, Zhao J, Liu S S, Wang X W. 2018. Intracellular trafficking of begomoviruses in the midgut cells of their insect vector. PLoS Pathogens, 14, e1006866.

Xu C F, Xia Y H, Li K B, Ke C. 1988. Further study of the transmission of citrus Huanglongbing by a psyllid, Diaphorina citri Kuwayama. International Organization of Citrus Virologists Conference Proceedings, 10, 243-248.

Yu H Z, Li N Y, Zeng X D, Song J C, Yu X D, Su H N, Chen C X, Yi L, Lu Z J. 2020. Transcriptome analyses of Diaphorina citri midgut responses to Candidatus Liberibacter Asiaticus infection. Insects, 11, 171.

Zhou C Y. 2020. The status of citrus Huanglongbing in China. Tropical Plant Pathology, 45, 279-284.

[1] Dong Deng, Wenqi Wu, Canxing Duan, Suli Sun, Zhendong Zhu.

A novel pathogen Fusarium cuneirostrum causing common bean (Phaseolus vulgaris) root rot in China [J]. >Journal of Integrative Agriculture, 2024, 23(1): 166-176.

[2] Mu Zeng, Binhu Wang, Lei Liu, Yalan Yang, Zhonglin Tang. Genome-wide association study identifies 12 new genetic loci associated with growth traits in pigs[J]. >Journal of Integrative Agriculture, 2024, 23(1): 217-227.
[3] Jie Cheng, Xiukai Cao, Shengxuan Wang, Jiaqiang Zhang, Binglin Yue, Xiaoyan Zhang, Yongzhen Huang, Xianyong Lan, Gang Ren, Hong Chen. 3D genome organization and its study in livestock breeding[J]. >Journal of Integrative Agriculture, 2024, 23(1): 39-58.
[4] Xiaotong Guo, Xiangju Li, Zheng Li, Licun Peng, Jingchao Chen, Haiyan Yu, Hailan Cui. Effect of mutations on acetohydroxyacid synthase (AHAS) function in Cyperus difformis L.[J]. >Journal of Integrative Agriculture, 2024, 23(1): 177-186.
[5] Yanan Xu, Yue Wu, Yan Han, Jiqing Song, Wenying Zhang, Wei Han, Binhui Liu, Wenbo Bai. Effect of chemical regulators on the recovery of leaf physiology, dry matter accumulation and translocation, and yield-related characteristics in winter wheat following dry-hot wind[J]. >Journal of Integrative Agriculture, 2024, 23(1): 108-121.
[6] Simin Liao, Zhibin Xu, Xiaoli Fan, Qiang Zhou, Xiaofeng Liu, Cheng Jiang, Liangen Chen, Dian Lin, Bo Feng, Tao Wang.

Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(1): 77-92.

[7] Tingcheng Zhao, Aibin He, Mohammad Nauman Khan, Qi Yin, Shaokun Song, Lixiao Nie.

Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management strategy for colored rice in tropical regions [J]. >Journal of Integrative Agriculture, 2024, 23(1): 93-107.

[8] Atiqur RAHMAN, Md. Hasan Sofiur RAHMAN, Md. Shakil UDDIN, Naima SULTANA, Shirin AKHTER, Ujjal Kumar NATH, Shamsun Nahar BEGUM, Md. Mazadul ISLAM, Afroz NAZNIN, Md. Nurul AMIN, Sharif AHMED, Akbar HOSAIN. Advances in DNA methylation and its role in cytoplasmic male sterility in higher plants[J]. >Journal of Integrative Agriculture, 2024, 23(1): 1-19.
[9] Jingui Wei, Qiang Chai, Wen Yin, Hong Fan, Yao Guo, Falong Hu, Zhilong Fan, Qiming Wang. Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions[J]. >Journal of Integrative Agriculture, 2024, 23(1): 122-140.
[10] Wan Wang, Zhenjiang Zhang, Weldu Tesfagaber, Jiwen Zhang, Fang Li, Encheng Sun, Lijie Tang, Zhigao Bu, Yuanmao Zhu, Dongming Zhao. Establishment of an indirect immunofluorescence assay for the detection of African swine fever virus antibodies[J]. >Journal of Integrative Agriculture, 2024, 23(1): 228-238.
[11] Yanfei Song, Tai’an Tian, Yichai Chen, Keshi Zhang, Maofa Yang, Jianfeng Liu. A mite parasitoid, Pyemotes zhonghuajia, negatively impacts the fitness traits and immune response of the fall armyworm, Spodoptera frugiperda[J]. >Journal of Integrative Agriculture, 2024, 23(1): 205-216.
[12] Qi Zhang, Wenqin Zhan, Chao Li, Ling Chang, Yi Dong, Jiang Zhang.

Host-induced silencing of MpPar6 confers Myzus persicae resistance in transgenic rape plants [J]. >Journal of Integrative Agriculture, 2024, 23(1): 187-194.

[13] Jie Xue, Xianglin Zhang, Songchao Chen, Bifeng Hu, Nan Wang, Zhou Shi.

Quantifying the agreement and accuracy characteristics of four satellite-based LULC products for cropland classification in China [J]. >Journal of Integrative Agriculture, 2024, 23(1): 283-297.

[14] Qiuyan Yan, Linjia Wu, Fei Dong, Shuangdui Yan, Feng Li, Yaqin Jia, Jiancheng Zhang, Ruifu Zhang, Xiao Huang.

Subsoil tillage enhances wheat productivity, soil organic carbon and available nutrient status in dryland fields [J]. >Journal of Integrative Agriculture, 2024, 23(1): 251-266.

[15] Akmaral Baidyussen, Gulmira Khassanova, Maral Utebayev, Satyvaldy Jatayev, Rystay Kushanova, Sholpan Khalbayeva, Aigul Amangeldiyeva, Raushan Yerzhebayeva, Kulpash Bulatova, Carly Schramm, Peter Anderson, Colin L. D. Jenkins, Kathleen L. Soole, Yuri Shavrukov. Assessment of molecular markers and marker-assisted selection for drought tolerance in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2024, 23(1): 20-38.
No Suggested Reading articles found!