Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Carbon sequestration rate, nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by organic manure in a rice–rice cropping system
Nafiu Garba HAYATU, LIU Yi-ren, HAN Tian-fu, Nano Alemu DABA, ZHANG Lu, SHEN Zhe, LI Ji-wen, Haliru MUAZU, Sobhi Faid LAMLOM, ZHANG Hui-min
2023, 22 (9): 2848-2864.   DOI: 10.1016/j.jia.2022.12.006
Abstract151)      PDF in ScienceDirect      

Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield, soil carbon storage, and nutrient use efficiency.  However, how the long-term substitution of chemical fertilizer with organic manure affects rice yield, carbon sequestration rate (CSR), and nitrogen use efficiency (NUE) while ensuring environmental safety remains unclear.  This study assessed the long-term effect of substituting chemical fertilizer with organic manure on rice yield, CSR, and NUE.  It also determined the optimum substitution ratio in the acidic soil of southern China.  The treatments were: (i) NPK0, unfertilized control; (ii) NPK1, 100% chemical nitrogen, phosphorus, and potassium fertilizer; (iii) NPKM1, 70% chemical NPK fertilizer and 30% organic manure; (iv) NPKM2, 50% chemical NPK fertilizer and 50% organic manure; and (v) NPKM3, 30% chemical NPK fertilizer and 70% organic manure.  Milk vetch and pig manure were sources of manure for early and late rice seasons, respectively.  The result showed that SOC content was higher in NPKM1, NPKM2, and NPKM3 treatments than in NPK0 and NPK1 treatments.  The carbon sequestration rate increased by 140, 160, and 280% under NPKM1, NPKM2, and NPKM3 treatments, respectively, compared to NPK1 treatment.  Grain yield was 86.1, 93.1, 93.6, and 96.5% higher under NPK1, NPKM1, NPKM2, and NPKM3 treatments, respectively, compared to NPK0 treatment.  The NUE in NPKM1, NPKM2, and NPKM3 treatments was higher as compared to NPK1 treatment for both rice seasons.  Redundancy analysis revealed close positive relationships of CSR with C input, total N, soil C:N ratio, catalase, and humic acids, whereas NUE was closely related to grain yield, grain N content, and phenol oxidase.  Furthermore, CSR and NUE negatively correlated with humin acid and soil C:P and N:P ratios.  The technique for order of preference by similarity to ideal solution (TOPSIS) showed that NPKM3 treatment was the optimum strategy for improving CSR and NUE.  Therefore, substituting 70% of chemical fertilizer with organic manure could be the best management option for increasing CSR and NUE in the paddy fields of southern China

Reference | Related Articles | Metrics
Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers
GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min
2023, 22 (7): 2221-2232.   DOI: 10.1016/j.jia.2023.02.037
Abstract249)      PDF in ScienceDirect      
Fertilization is an effective technique to improve soil fertility and increase crop yield. The long-term effects of different fertilizers on soil considerably vary. Over 38 consecutive years of different fertilization positioning experiments in a double cropping rice field of Qiyang Red Soil Experimental Station, seven different fertilization treatments including CK (no fertilization), NPK (nitrogen, phosphorus, and potassium fertilizer), M (cow manure), NPKM (nitrogen, phosphorus, and potassium with cow manure), NPM (nitrogen and phosphorus with cow manure), NKM (nitrogen and potassium with cow manure), and PKM (phosphorus and potassium with cow manure) were applied to study the effects on rice yield, soil fertility, and nutrient apparent balance in a paddy field. The results showed that the annual average yields of rice in NPKM, NPM, NKM, PKM, M, NPK and CK treatments ranged from 6 214 to 11 562 kg ha–1. Yields under longterm organic and inorganic treatments (NPKM, NPM, NKM and PKM) were 22.58, 15.35, 10.53 and 4.41%, respectively, greater than under the NPK treatment. Soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN) and available potassium (AK) concentration with long-term organic and inorganic treatment (NPKM, NPM, NKM and PKM) were significantly higher than in inorganic fertilizer (NPK) treatments. Soil total phosphorus (TP) and available phosphorus (AP) contentration with organic fertilizer combined with inorganic N and P fertilizer treatment (NPKM, NPM and PKM) were significantly higher than with inorganic fertilizer alone (NPK treatments). The average annual rice yield (11 562 kg ha–1), SOC (20.88 g kg–1), TN (2.30 g kg–1), TP (0.95 g kg–1), TK (22.50 g kg–1) and AP (38.94 mg kg–1) concentrations were the highest in the NPKM treatment. The soil AN concentration (152.40 mg kg–1) and AK contentration (151.00 mg kg–1) were the highest in the NKM treatment. N and P application led to a surplus of nitrogen and phosphorus in the soil, but NPKM treatment effectively reduced the surplus compared with other treatments. Soils under all treatments were deficient in potassium. Correlation analysis showed that SOC, TN, AN, TP, and AP contentration was significantly correlated with rice yield; the correlation coefficients were 0.428, 0.496, 0.518, 0.501, and 0.438, respectively. This study showed that the combined application of N, P, and K with cow manure had important effects on rice yield and soil fertility, but balanced application of N, P, and K with cow manure was required.
Reference | Related Articles | Metrics
An optimized protocol using Steedman’s wax for high-sensitivity RNA in situ hybridization in shoot apical meristems and flower buds of cucumber
WANG Cui, SUN Jin-jing, YANG Xue-yong, WAN Li, ZHANG Zhong-hua, ZHANG Hui-min
2023, 22 (2): 464-470.   DOI: 10.1016/j.jia.2022.08.038
Abstract176)      PDF in ScienceDirect      

In situ mRNA hybridization (ISH) is a powerful tool for examining the spatiotemporal expression of genes in shoot apical meristems and flower buds of cucumber.  The most common ISH protocol uses paraffin wax; however, embedding tissue in paraffin wax can take a long time and might result in RNA degradation and decreased signals.  Here, we developed an optimized protocol to simplify the process and improve RNA sensitivity.  We combined embedding tissue in low melting-point Steedman’s wax with processing tissue sections in solution, as in the whole-mount ISH method in the optimized protocol. Using the optimized protocol, we examined the expression patterns of the CLAVATA3 (CLV3) and WUSCHEL (WUS) genes in shoot apical meristems and floral meristems of Cucumis sativus (cucumber) and Arabidopsis thaliana (Arabidopsis).  The optimized protocol saved 4–5 days of experimental period compared with the standard ISH protocol using paraffin wax.  Moreover, the optimized protocol achieved high signal sensitivity.  The optimized protocol was successful for both cucumber and Arabidopsis, which indicates it might have general applicability to most plants

Reference | Related Articles | Metrics
A novel mutation in ACS11 leads to androecy in cucumber
WANG Jie, LI Shuai, CHEN Chen, ZHANG Qi-qi, ZHANG Hui-min, CUI Qing-zhi, CAI Guang-hua, ZHANG Xiao-peng, CHAI Sen, WAN Li, YANG Xue-yong, ZHANG Zhong-hua, HUANG San-wen, CHEN Hui-ming, SUN Jin-jing
2023, 22 (11): 3312-3320.   DOI: 10.1016/j.jia.2023.03.003
Abstract199)      PDF in ScienceDirect      

Sex determination in plants gives rise to unisexual flowers.  A better understanding of the regulatory mechanism underlying the production of unisexual flowers will help to clarify the process of sex determination in plants and allow researchers and farmers to harness heterosis.  Androecious cucumber (Cucumis sativus L.) plants can be used as the male parent when planted alongside a gynoecious line to produce heterozygous seeds, thus reducing the cost of seed production.  The isolation and characterization of additional androecious genotypes in varied backgrounds will increase the pool of available germplasm for breeding.  Here, we discovered an androecious mutant in a previously generated ethyl methanesulfonate (EMS)-mutagenized library of the cucumber inbred line ‘406’.  Genetic analysis, whole-genome resequencing, and molecular marker-assisted verification demonstrated that a nonsynonymous mutation in the ethylene biosynthetic gene 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE 11 (ACS11) conferred androecy.  The mutation caused an amino acid change from serine (Ser) to phenylalanine (Phe) at position 301 (S301F).  In vitro enzyme activity assays revealed that this S301F mutation leads to a complete loss of enzymatic activity.  This study provides a new germplasm for use in cucumber breeding as the androecious male parent, and it offers new insights into the catalytic mechanism of ACS enzymes.

Reference | Related Articles | Metrics
Interaction of soil microbial communities and phosphorus fractions under long-term fertilization in paddy soil 
Muhammad QASWAR, Waqas AHMED, HUANG Jing, LIU Kai-lou, ZHANG Lu, HAN Tian-fu, DU Jiang-xue, Sehrish ALI, Hafeez UR-RAHIM, HUANG Qing-hai, ZHANG Hui-min
2022, 21 (7): 2134-2144.   DOI: 10.1016/S2095-3119(21)63733-4
Abstract132)      PDF in ScienceDirect      
Understanding the impact of biological activities on the soil phosphorus (P) distribution under long-term fertilizer application can facilitate better soil P fertility management.  Therefore, the primary objectives of this study were to investigate the effect of long-term (since 1981) fertilizer application on the soil P fractions and microbial community and to evaluate correlations between the microbial community structure and P distribution.  The following treatments were implemented in a long-term field trial: no fertilization (CK), inorganic N and K (NK), inorganic P and K (PK), inorganic N, P and K (NPK) and manure+NPK (MNPK) fertilization.  The study showed that the soil pH, soil organic carbon and total and available N and P concentrations were considerably higher in the MNPK treatment than in the CK treatment.  The soil microbial biomass C, N and P concentrations were also significantly higher in the MNPK treatment than in the CK treatment.  Among fertilization treatments, the β-1,4-glucosidase, α-1,4-glucosidase, urease, acid phosphatase and phosphodiesterase activities were the highest in the MNPK treatment.  Compared to inorganic fertilization, the MNPK treatment increased the labile soil P fractions and decreased the residual soil P concentration.  Continuous fertilization significantly affected the soil microbial composition.  The total phospholipid fatty acid (PLFA) concentrations in the NK, PK, NPK and MNPK treatments were 23.3, 43.1, 48.7 and 87.7% higher, respectively, than in the CK treatment.  A significant correlation was observed between the microbial community and soil P fractions.  Moreover, the aggregated boosted tree (ABT) model showed that among the various soil biochemical properties, the total PLFA concentration was the factor that most influenced the active P pool, accounting for 35.4% of the relative influence of all soil biochemical properties examined.  These findings reveal that combined manure and inorganic fertilizer application is a better approach than applying inorganic fertilizer alone for sustaining long-term P fertility by mediating soil biological activity.


Reference | Related Articles | Metrics
Dynamics of organic carbon and nitrogen in deep soil profile and crop yields under long-term fertilization in wheat-maize cropping system
Muhammad QASWAR, LI Dong-chu, HUANG Jing, HAN Tian-fu, Waqas AHMED, Sehrish ALI, Muhammad Numan KHAN, Zulqarnain Haider KHAN, XU Yong-mei, LI Qian, ZHANG Hui-min, WANG Bo-ren, Ahmad TAUQEER
2022, 21 (3): 826-839.   DOI: 10.1016/S2095-3119(20)63501-8
Abstract127)      PDF in ScienceDirect      
Soil organic carbon (SOC) and nitrogen (N) are two of the most important indicators for agricultural productivity.  The primary objective of this study was to investigate the changes in SOC and N in the deep soil profile (up to 100 cm) and their relationships with crop productivity under the influence of long-term (since 1990) fertilization  in the wheat-maize cropping system.  Treatments included CK (control), NP (inorganic N and phosphorus (P) fertilizers), NPK (inorganic N, P and potassium fertilizers), NPKM (NPK plus manure), and M (manure).  Crop yield and the properties of topsoil were measured yearly from 2001 to 2009.  C and N contents were measured at five different depths in 2001 and 2009.  The results showed that wheat and maize yields decreased between 2001 and 2009 under the inorganic fertilizer (NP and NPK) treatments.  The average yield between 2001 and 2009 under the NP, NPK, NPKM, and M treatments (compared with the CK treatment) increased by 38, 115, 383, and 381%, respectively, for wheat and 348, 891, 2 738, and 1 845%, respectively, for maize.  Different long-term fertilization treatments significantly changed coarse free particulate (cfPOC), fine free particulate (ffPOC), intramicroaggregate particulate (iPOC), and mineral-associated (mSOC) organic carbon fractions.  In the experimental years of 2001 and 2009, soil fractions occurred in the following order for all treatments: mSOC>cfPOC>iPOC>ffPOC.  All fractions were higher under the manure application treatments than under the inorganic fertilization treatments.  Compared to the inorganic fertilization treatments, manure input enhanced the stocks of SOC and total N in the surface layer (0–20 cm) but decreased SOC and N in the deep soil layer (80–100 cm).  This reveals the efficiency of manure in increasing yield productivity and decreasing risk of vertical loss of nutrients, especially N, compared to inorganic fertilization treatments.  The findings provide opportunities for understanding deep soil C and N dynamics, which could help mitigate climate change impact on agricultural production and maintain soil health.


Reference | Related Articles | Metrics
iTRAQ-based quantitative proteomics analysis of defense responses triggered by the pathogen Rhizoctonia solani infection in rice
FENG Zhi-ming, GAO Peng, ZHAO Jian-hua, WANG Guang-da, ZHANG Hui-min, CAO Wen-lei, XUE Xiang, ZHANG Ya-fang, Ma Yu-yin, Hua Rong, CHEN Zong-xiang, CHEN Xi-jun, HU Ke-ming, ZUO Shi-min
2022, 21 (1): 139-152.   DOI: 10.1016/S2095-3119(20)63499-2
Abstract180)      PDF in ScienceDirect      
The soil-borne necrotrophic fungus Rhizoctonia solani is one of destructive fungi causing severe yield losses in various important crops.  However, the host defense mechanisms against the invasion of this pathogen are poorly understood.  In this study, we employed an iTRAQ-based quantitative proteomic approach to investigate host proteins responsive to R. solani using the resistant rice cultivar YSBR1.  As a whole, we identified 319 differentially accumulated proteins (DAPs) after inoculation of rice plants with R. solani.  Functional categorization analysis indicates that these DAPs cover a broad range of functions.  Notably, a substantial portion of the DAPs are involved in cell redox homeostasis, carbohydrate metabolism, and phenylpropanoid biosynthesis, or belong to pathogenesis-related proteins, indicating that these processes/proteins play important roles in host defense against R. solani.  Interestingly, all of the DAPs involved in photosynthesis and chlorophyll biosynthetic processes, and part of the DAPs involved in phenylpropanoid biosynthesis, show reduced accumulation after R. solani infection, suggesting that R. solani probably inhibits host photosynthetic system and phenylpropanoid biosynthesis to facilitate infection and colonization.  In conclusion, our results provide both valuable resources and new insights into the molecular mechanisms underlying rice and R. solani interaction.
Reference | Related Articles | Metrics
Evaluation of a povidone-iodine and chitosan-based barrier teat dip in the prevention of mastitis in dairy cows
ZHANG Hui-min, JIANG Hong-rui, CHEN Dai-jie, SHEN Zi-liang, MAO Yong-jiang, LIANG Yu-sheng, Juan J. LOOR, YANG Zhang-ping
2021, 20 (6): 1615-1625.   DOI: 10.1016/S2095-3119(20)63418-9
Abstract139)      PDF in ScienceDirect      
Postmilking teat dip is an important tool used to prevent mastitis in the modern dairy industry.  In this study, we evaluated the in vitro and in vivo efficacies of a barrier teat dip containing povidone-iodine and chitosan for the prevention of mastitis.  In experiment 1, we evaluated the antibacterial effects of chitosans with different molecular weights against six mastitis-causing bacteria based on the minimal inhibitory concentration test.  The results showed that 50 kDa chitosan had the maximum antibacterial activity compared with 5, 150 and 350 kDa chitosans.  In experiment 2, the inhibition zone test indicated that the barrier teat dip with 4.0% povidone-iodine and 1.0% chitosan had higher (P<0.05) in vitro antibacterial efficacy against most tested mastitis-causing bacteria than the barrier teat dip with 4.0% povidone-iodine and no chitosan.  In experiments 3 and 4, we evaluated the efficacies of two postmilking teat dips, 1) a barrier teat dip containing 1.0% chitosan and 4.0% povidone-iodine and 2) a conventional nonbarrier product containing 10% povidone-iodine in a field trial at two commercial dairy herds (1 and 2).  A 56-d split-udder experiment (experiment 3) was conducted using 47 lactating Chinese Holstein cows in herd 1.  Both left teats were immersed in barrier postmilking dip, and both right teats were dipped with nonbarrier postmilking dip.  During a 56-d split-herd experiment (experiment 4), a total of 139 lactating Chinese Holstein cows from herd 2 were allocated to two groups: 1) all teats of 67 cows were dipped in the nonbarrier teat dip, and 2) all teats of 72 cows were dipped in the barrier teat dip.  Milk samples were collected and analyzed for somatic cell count (SCC), fat content, protein content, and fat-to-protein ratio prior to the start of sampling (0 d), and at 28 and 56 d after initiation.  Bacteriological analysis was only performed on milk samples with SCC≥200?000 cells mL–1.  In experiment 3, no differences (P>0.05) in SCC, somatic cell score (SCS) or other milk quality indicators were observed between nonbarrier and barrier teat dip treatment teats throughout the experiment.  At the end of experiment 4, compared with nonbarrier teat dip group, a reduction (P<0.05) of 29% was observed for subclinical mastitis infection prevalence in the barrier teat dip group.  In the barrier teat dip group, the subclinical mastitis infection prevalence on 56 d was lower (P<0.05) than 0 d.  No differences (P>0.05) in milk qualities or clinical mastitis incidence were detected between groups.  Bacteriological analysis demonstrated that the barrier product containing povidone-iodine and chitosan reduced the subclinical mastitis infection prevalence induced by mastitis pathogens.  This effect was mainly due to the reductions in Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia fergusonii infections.  Overall, the data indicated that a barrier teat dip containing 4% povidone-iodine and 1% chitosan was more effective than 10% povidone-iodine in preventing subclinical mastitis. 
Reference | Related Articles | Metrics
Change of soil productivity in three different soils after long-term field fertilization treatments
LIU Kai-lou, HAN Tian-fu, HUANG Jing, ZHANG Shui-qing, GAO Hong-jun, ZHANG Lu, Asad SHAH, HUANG Shao-min, ZHU Ping, GAO Su-duan, MA Chang-bao, XUE Yan-dong, ZHANG Hui-min
2020, 19 (3): 848-858.   DOI: 10.1016/S2095-3119(19)62742-5
Abstract116)      PDF in ScienceDirect      
Soil productivity (SP) without external fertilization influence is an important indicator for the capacity of a soil to support crop yield. However, there have been difficulties in estimating values of SPs for soils after various long-term field treatments because the treatment without external fertilization is used but is depleted in soil nutrients, leading to erroneous estimation. The objectives of this study were to estimate the change of SP across different cropping seasons using pot experiments, and to evaluate the steady SP value (which is defined by the basal contribution of soil itself to crop yield) after various longterm fertilization treatments in soils at different geographical locations. The pot experiments were conducted in Jinxian of Jiangxi Province with paddy soil, Zhengzhou of Henan Province with fluvo-aquic soil, and Gongzhuling of Jilin Province with black soils, China. Soils were collected after long-term field fertilization treatments of no fertilizer (control; CK-F), chemical fertilizer (NPK-F), and combined chemical fertilizer with manure (NPKM-F). The soils received either no fertilizer (F0) or chemical fertilizer (F1) for 3–6 cropping seasons in pots, which include CK-P (control; no fertilizer from long-term field experiments for pot experiments), NPK-P (chemical fertilizer from long-term field experiments for pot experiments), and NPKM-P (combined chemical and organic fertilizers from long-term field experiments for pot experiments). The yield data were used to calculate SP values. The initial SP values were high, but decreased rapidly until a relatively steady SP was achieved at or after about three cropping seasons for paddy and fluvo-aquic soils. The steady SP values in the third cropping season from CK-P, NPK-P, and NPKM-P treatments were 37.7, 44.1, and 50.0% in the paddy soil, 34.2, 38.1, and 50.0% in the fluvo-aquic soil, with the highest value observed in the NPKM-P treatment for all soils. However, further research is required in the black soils to incorporate more than three cropping seasons. The partial least squares path mode (PLS-PM) showed that total N (nitrogen) and C/N ratio (the ratio of soil organic carbon and total N) had positive effects on the steady SP for all three soils. These findings confirm the significance of the incorporation of manure for attaining high soil productivity. Regulation of the soil C/N ratio was the other main factor for steady SP through fertilization management.
Reference | Related Articles | Metrics
Comparison of carbon sequestration efficiency in soil aggregates between upland and paddy soils in a red soil region of China
LIU Kai-lou, HUANG Jing, LI Da-ming, YU Xi-chu, YE Hui-cai, HU Hui-wen, HU Zhi-hua, HUANG Qing-hai, ZHANG Hui-min
2019, 18 (6): 1348-1359.   DOI: 10.1016/S2095-3119(18)62076-3
Abstract221)      PDF in ScienceDirect      
There is limited information on carbon sequestration efficiency (CSE) of soil aggregates in upland and paddy soils under long-term fertilization regimes.  In a red soil region of southern China, an upland soil experiment started in 1986 and a paddy soil experiment commenced in 1981.  These experiments were conducted using different fertilization treatments.  After 30 years, soil organic carbon (SOC) content and stock of different aggregate components were analyzed.  The results showed that the SOC contents and stocks in upland soil were lower than in paddy soil.  In both upland and paddy soils, the SOC contents and stocks of all aggregate components in NPKM (combined treatment with chemical nitrogen (N), phosphorus (P), potassium (K) fertilizers and manure) were the highest among all treatments.  Compared with CK (no fertilizer), SOC content of all aggregate components in NPKM was increased by 13.21–63.11% and 19.13–73.33% in upland and paddy soils, respectively.  Meanwhile, the change rates in SOC stock of all aggregate components in upland soil were lower than in paddy soil, although the change rate of SOC stock of all aggregate components in NPKM was higher than in other treatments.  Furthermore, a linear equation could fit the relationships between carbon (C) input and change rate of SOC stock (P<0.05).  Results indicated that the sum of CSE from all aggregate components in upland soil (16.02%) was higher than that of paddy soil (15.12%) in the same climatic condition and from the same parent material.  However, the CSEs from all aggregates were higher than that of bulk soil, although the result from bulk soil also showed that the CSE of upland soil was higher than that of paddy soil.
Reference | Related Articles | Metrics
Long-term organic and inorganic fertilizations enhanced basic soil productivity in a fluvo-aquic soil
ZHA Yan, WU Xue-ping, GONG Fu-fei, XU Ming-gang, ZHANG Hui-min, CHEN Li-ming, HUANG Shao-min, CAI Dian-xiong
2015, 14 (12): 2477-2489.   DOI: 10.1016/S2095-3119(15)61191-1
Abstract1563)      PDF in ScienceDirect      
The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity (BSP). In this study, BSP is defined as the productive capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local field management. Based on 19-yr data of the long-term agronomic experiments (1989–2008) on a fluvo-aquic soil in Zhengzhou, Henan Province, China, the decision support system for agrotechnology transfer (DSSAT ver. 4.0) crop growth model was used to simulate yields by BSP of winter wheat (Triticum aestivium L.) and summer maize (Zea mays L.) to examine the relationship between BSP and soil organic carbon (SOC) under long-term fertilization. Five treatments were included: (1) no fertilization (control), (2) nitrogen, phosphorus and potassium fertilizers (NPK), (3) NPK plus manure (NPKM), (4) 1.5 times of NPKM (1.5NPKM), and (5) NPK plus straw (NPKS). After 19 yr of treatments, the SOC stock increased 16.7, 44.2, 69.9, and 25.2% under the NPK, NPKM, 1.5NPKM, and NPKS, respectively, compared to the initial value. Among various nutrient factors affecting contribution percentage of BSP to winter wheat and summer maize, SOC was a major affecting factor for BSP in the fluvo-aquic soil. There were significant positive correlations between SOC stock and yields by BSP of winter wheat and summer maize (P<0.01), and yields by BSP of winter wheat and summer maize increased 154 and 132 kg ha–1 when SOC stock increased 1 t C ha–1. Thus, increased SOC accumulation is a crucial way for increasing BSP in fluvo-aquic soil. The manure or straw combined application with chemical fertilizers significantly enhanced BSP compared to the application of chemical fertilizers alone.
Reference | Related Articles | Metrics
Soil Organic Carbon Accumulation Increases Percentage of Soil Olsen-P to Total P at Two 15-Year Mono-Cropping Systems in Northern China
SHEN Pu, HE Xin-hua, XU Ming-gang, ZHANG Hui-min, PENG Chang, GAO Hong-jun, LIU
2014, 13 (3): 597-603.   DOI: 10.1016/S2095-3119(13)60717-0
Abstract1599)      PDF in ScienceDirect      
Soil organic carbon (SOC) and soil Olsen-P are key soil fertility indexes but information on their relationships is limited particularly under long-term fertilization. We investigated the relationships between SOC and the percentage of soil Olsen-P to total P (PSOPTP) under six different 15-yr (1990-2004) long-term fertilizations at two cropping systems in northern China. These fertilization treatments were (1) unfertilized control (control); (2) chemical nitrogen (N); (3) N plus chemical P (NP); (4) NP plus chemical potassium (NPK); (5) NPK plus animal manure (NPKM) and (6) high NPKM (hNPKM). Compared with their initial values in 1989 at both sites, during the 11th to 15th fertilization years annual mean SOC contents were significantly increased by 39.4-47.0% and 58.9-93.9% at Gongzhuling, Jilin Province, and Urumqi, Xinjiang, China, under the two NPKM fertilizations, respectively, while no significant changes under the no-P or chemical P fertilization. During the 11th to 15th fertilization years, annual mean PSOPTP was respectively increased by 2.6-4.2 and 5.8-14.1 times over the initial values under the two chemical P fertilizations and the two NPKM fertilizations, but was unchanged in their initial levels under the two no-P fertilizations at both sites. Over the 15-yr long-term fertilization SOC significantly positively correlated with PSOPTP (r2=0.55-0.79, P<0.01). We concluded that the combination of chemical P plus manure is an effective way to promote SOC accumulation and the percentage of soil Olsen-P to total P at the two mono-cropping system sites in northern China.
Reference | Related Articles | Metrics
Basic Soil Productivity of Spring Maize in Black Soil Under Long-Term Fertilization Based on DSSAT Model
ZHA Yan, WU Xue-ping , HE Xin-hua, ZHANG Hui-min, GONG Fu-fei, CAI Dian-xiong, ZHU
2014, 13 (3): 577-587.   DOI: 10.1016/S2095-3119(13)60715-7
Abstract1865)      PDF in ScienceDirect      
Increasing basic farmland soil productivity has significance in reducing fertilizer application and maintaining high yield of crops. In this study, we defined that the basic soil productivity (BSP) is the production capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local environment and field management. Based on 22-yr (1990-2011) long-term experimental data on black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China, the decision support system for an agro-technology transfer (DSSAT)-CERES-Maize model was applied to simulate the yield by BSP of spring maize (Zea mays L.) to examine the effects of long-term fertilization on changes of BSP and explore the mechanisms of BSP increasing. Five treatments were examined: (1) no-fertilization control (control); (2) chemical nitrogen, phosphorus, and potassium (NPK); (3) NPK plus farmyard manure (NPKM); (4) 1.5 time of NPKM (1.5NPKM) and (5) NPK plus straw (NPKS). Results showed that after 22-yr fertilization, the yield by BSP of spring maize significantly increased 78.0, 101.2, and 69.4% under the NPKM, 1.5NPKM and NPKS, respectively, compared to the initial value (in 1992), but not significant under NPK (26.9% increase) and the control (8.9% decrease). The contribution percentage of BSP showed a significant rising trend (P<0.05) under 1.5NPKM. The average contribution percentage of BSP among fertilizations ranged from 74.4 to 84.7%, and ranked as 1.5NPKM>NPKM>NPK≈NPKS, indicating that organic manure combined with chemical fertilizers (1.5NPKM and NPKM) could more effectively increase BSP compared with the inorganic fertilizer application alone (NPK) in the black soil. This study showed that soil organic matter (SOM) was the key factor among various fertility factors that could affect BSP in the black soil, and total N, total P and/or available P also played important role in BSP increasing. Compared with the chemical fertilization, a balanced chemical plus manure or straw fertilization (NPKM or NPKS) not only increased the concentrations of soil nutrient, but also improved the soil physical properties, and structure and diversity of soil microbial population, resulting in an iincrease of BSP. We recommend that a balanced chemical plus manure or straw fertilization (NPKM or NPKS) should be the fertilization practices to enhance spring maize yield and improve BSP in the black soil of Northeast China.
Reference | Related Articles | Metrics