Rhododendron is a well-known genus consisting of commercially valuable ornamental woody plant species. Heat stress is a major environmental factor that affects rhododendron growth. Melatonin was recently reported to alleviate the effects of abiotic stress on plants. However, the role of melatonin in rhododendron plants is unknown. In this study, the effect of melatonin on rhododendron plants exposed to heat stress and the potential underlying mechanism were investigated. Analyses of morphological characteristics and chlorophyll a fluorescence indicated 200 µmol L–1 was the optimal melatonin concentration for protecting rhododendron plants from heat stress. To elucidate how melatonin limits the adverse effects of high temperatures, melatonin contents, photosynthetic indices, Rubisco activity, and adenosine triphosphate (ATP) contents were analyzed at 25, 35, and 40°C, respectively. Compared with the control, exogenous application of melatonin improved the melatonin contents, electron transport rate, photosystem II and I activities, Rubisco activity, and ATP contents under heat stress. The transcriptome analysis revealed many of the heat-induced differentially expressed genes were associated with the photosynthetic pathway; the expression of most of these genes was down-regulated by heat stress more in the melatonin-free plants than in the melatonin-treated plants. We identified RhPGR5A, RhATPB, RhLHCB3, and RhRbsA as key genes. Thus, we speculate that melatonin promotes photosynthetic electron transport, improves Calvin cycle enzyme activities, and increases ATP production. These changes lead to increased photosynthetic efficiency and CO2 assimilation under heat stress conditions via the regulated expression of specific genes, including RhRbsA. Therefore, the application of exogenous melatonin may increase the tolerance of rhododendron to heat stress.
Molecular marker-assisted selection (MAS) can significantly accelerate and improve the efficiency of the breeding process in seedless grape cultivars. In this study, we developed the KASP_VviAGL11 and VviAGL11_410 markers based on a single nucleotide polymorphism (SNP) site (Chr18: 26889437 (A/C)) of the VviAGL11 gene, and compared them with previously reported SSR markers p3_VvAGL11 and 5U_VviAGL11 by testing 101 cultivars and 81 F1 hybrid progenies. The results showed that both of the proposed markers obtained 100% accuracy rates in detecting allele A, which was closely associated with the seedless trait in grapes, while p3_VvAGL11 and 5U_VviAGL11 had lower accuracy rates due to their tendency to produce false positives. After careful evaluation of the technical advantages and disadvantages associated with these markers, we concluded that KASP_VviAGL11 was superior in terms of simplicity, cost-effectiveness, efficiency, and accuracy. Thus, we optimized the process of molecular MAS for seedless grapes, focusing on the KASP_VviAGL11 marker as a central component, to provide key technical support for the development of new seedless grape cultivars.
Embryo rescue technology plays an important role in seedless grape breeding. However, the efficiency of embryo rescue, including the embryo formation, germination, and seedling rates, is closely related to the parental genotypes, degree of abortion, growth medium, and plant growth regulators. In this study, we investigated the effects of different concentrations of paclobutrazol (PAC), a plant growth regulator, and embryo collection times on the embryo formation, germination, and seedling rates for different hybrid combinations of grape breeding varieties used for their aroma and cold-resistance traits. The results showed that the different PAC concentrations had varying impacts on the development of ovules and embryos from the different grape varieties. The embryo formation rates of the ‘Sultanina Rose’בBeibinghong’ and ‘Kunxiang Seedless’בTaishan-2’ crosses were the highest under the 5.1 μmol L–1 PAC treatment. The 1.0 μmol L–1 PAC treatment was optimal for the germination and seedling development of the ‘Sultanina Rose’בBeibinghong’ embryos, whereas the 0.2 μmol L–1 PAC treatment induced the highest germination rate for the ‘Sultanina Rose’בKunxiang Seedless’ cross. The optimal sampling times for each cross varied as 39 d after pollination (DAP) for the ‘Flame Seedless’בMuscat Hamburg’ cross, 46 DAP for the ‘Kunxiang Seedless’בBeibinghong’ cross, and 41 DAP for the ‘Ruby Seedless’בBeibinghong’ and ‘Fantasy Seedless’בShuangyou’ crosses. Moreover, the medium modified with 0.5 g L–1 of indole-3-butyric acid allowed the malformed seedlings to develop into plantlets and achieve larger progenies. This study provides a useful basis for further studies into grape embryo rescue and could improve breeding efforts for new seedless grape varieties.
Rapeseed mustard (Brassica juncea L.) is the third most important oilseed crop in the world but the genetic mechanism underlying its massive phenotypic variation remains largely unexplored. In this study, specific length amplified fragment sequencing (SLAF-Seq) was used to resequence a population comprising 197 F8 recombinant inbred lines (RILs), derived from a cross between vegetable-type Qichi881 and oilseed-type YufengZC in B. juncea. In total, 438,895 high-quality SLAFs were discovered, of which 47,644 were polymorphic, and 3,887 of the polymorphic markers met the requirements for genetic map construction. The final map included 3,887 markers on 18 linkage groups and was 1,830.23 cM in length, with an average distance of 0.47 cM between adjacent markers. Using the newly constructed high-density genetic map, a total of 53 QTLs for erucic acid (EA), oleic acid (OA), and linolenic acid (LNA) were detected and integrated into 8 consensus QTLs with two for each of these traits. For each of these three traits, two candidate genes were cloned and sequence analyzed, indicating colocalization with their respective consensus QTLs. The co-dominant allele-specific markers for Bju.FAD3.A03 and Bju.FAD3.B07 were developed and showed co-localization with their consensus QTL and co-segregation with LNA content, further supporting the results of QTL mapping and bioinformatic analysis. The expression level for the cloned homologous genes was also identified, which was tightly correlated with the EA, OA and LNA contents of different lines. The results would facilitate the improvement of fatty acid traits and molecular breeding of B. juncea. More use of the high-density genetic map created in this study is also discussed.