Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Physiological and transcriptome analyses provide new insights into the mechanism mediating the enhanced tolerance of melatonin-treated rhododendron plants to heat stress
XU Yan-xia, ZHANG Jing, WAN Zi-yun, HUANG Shan-xia, DI Hao-chen, HE Ying, JIN Song-heng
2023, 22 (8): 2397-2411.   DOI: 10.1016/j.jia.2023.07.005
Abstract319)      PDF in ScienceDirect      

Rhododendron is a well-known genus consisting of commercially valuable ornamental woody plant species.  Heat stress is a major environmental factor that affects rhododendron growth.  Melatonin was recently reported to alleviate the effects of abiotic stress on plants.  However, the role of melatonin in rhododendron plants is unknown.  In this study, the effect of melatonin on rhododendron plants exposed to heat stress and the potential underlying mechanism were investigated.  Analyses of morphological characteristics and chlorophyll a fluorescence indicated 200 µmol L–1 was the optimal melatonin concentration for protecting rhododendron plants from heat stress.  To elucidate how melatonin limits the adverse effects of high temperatures, melatonin contents, photosynthetic indices, Rubisco activity, and adenosine triphosphate (ATP) contents were analyzed at 25, 35, and 40°C, respectively.  Compared with the control, exogenous application of melatonin improved the melatonin contents, electron transport rate, photosystem II and I activities, Rubisco activity, and ATP contents under heat stress.  The transcriptome analysis revealed many of the heat-induced differentially expressed genes were associated with the photosynthetic pathway; the expression of most of these genes was down-regulated by heat stress more in the melatonin-free plants than in the melatonin-treated plants.  We identified RhPGR5A, RhATPB, RhLHCB3, and RhRbsA as key genes.  Thus, we speculate that melatonin promotes photosynthetic electron transport, improves Calvin cycle enzyme activities, and increases ATP production.  These changes lead to increased photosynthetic efficiency and CO2 assimilation under heat stress conditions via the regulated expression of specific genes, including RhRbsA.  Therefore, the application of exogenous melatonin may increase the tolerance of rhododendron to heat stress.

Reference | Related Articles | Metrics
Development and application of KASP marker for high throughput detection of the seedless trait in grapevine
WANG Fu-qiang, BIAN Lu, QIU Peng-peng, GUO Shuo, GUO Jing-han, GUO Chen-shuo, JIANG Jian-fu, LIU Chong-huai, WANG Yong, LIU Guo-tian, WANG Yue-jin, XU Yan
2023, 22 (11): 3269-3283.   DOI: 10.1016/j.jia.2023.10.014
Abstract207)      PDF in ScienceDirect      

Molecular marker-assisted selection (MAS) can significantly accelerate and improve the efficiency of the breeding process in seedless grape cultivars.  In this study, we developed the KASP_VviAGL11 and VviAGL11_410 markers based on a single nucleotide polymorphism (SNP) site (Chr18: 26889437 (A/C)) of the VviAGL11 gene, and compared them with previously reported SSR markers p3_VvAGL11 and 5U_VviAGL11 by testing 101 cultivars and 81 F1 hybrid progenies.  The results showed that both of the proposed markers obtained 100% accuracy rates in detecting allele A, which was closely associated with the seedless trait in grapes, while p3_VvAGL11 and 5U_VviAGL11 had lower accuracy rates due to their tendency to produce false positives.  After careful evaluation of the technical advantages and disadvantages associated with these markers, we concluded that KASP_VviAGL11 was superior in terms of simplicity, cost-effectiveness, efficiency, and accuracy.  Thus, we optimized the process of molecular MAS for seedless grapes, focusing on the KASP_VviAGL11 marker as a central component, to provide key technical support for the development of new seedless grape cultivars.

Reference | Related Articles | Metrics
Effects of exogenous paclobutrazol and sampling time on the efficiency of in vitro embryo rescue in the breeding of new seedless grape varieties
XU Teng-fei, GUO Yu-rui, YUAN Xiao-jian, CHU Yan-nan, WANG Xiao-wei, HAN Yu-lei, WANG Wen-yuan, WANG Yue-jin, SONG Rui, FANG Yu-lin, WANG Lu-jun, XU Yan
2022, 21 (6): 1633-1644.   DOI: 10.1016/S2095-3119(21)63815-7
Abstract348)      PDF in ScienceDirect      

Embryo rescue technology plays an important role in seedless grape breeding.  However, the efficiency of embryo rescue, including the embryo formation, germination, and seedling rates, is closely related to the parental genotypes, degree of abortion, growth medium, and plant growth regulators.  In this study, we investigated the effects of different concentrations of paclobutrazol (PAC), a plant growth regulator, and embryo collection times on the embryo formation, germination, and seedling rates for different hybrid combinations of grape breeding varieties used for their aroma and cold-resistance traits.  The results showed that the different PAC concentrations had varying impacts on the development of ovules and embryos from the different grape varieties.  The embryo formation rates of the ‘Sultanina Rose’בBeibinghong’ and ‘Kunxiang Seedless’בTaishan-2’ crosses were the highest under the 5.1 μmol L–1 PAC treatment.  The 1.0 μmol L–1 PAC treatment was optimal for the germination and seedling development of the ‘Sultanina Rose’בBeibinghong’ embryos, whereas the 0.2 μmol L–1 PAC treatment induced the highest germination rate for the ‘Sultanina Rose’בKunxiang Seedless’ cross.  The optimal sampling times for each cross varied as 39 d after pollination (DAP) for the ‘Flame Seedless’בMuscat Hamburg’ cross, 46 DAP for the ‘Kunxiang Seedless’בBeibinghong’ cross, and 41 DAP for the ‘Ruby Seedless’בBeibinghong’ and ‘Fantasy Seedless’בShuangyou’ crosses.  Moreover, the medium modified with 0.5 g L–1 of indole-3-butyric acid allowed the malformed seedlings to develop into plantlets and achieve larger progenies.  This study provides a useful basis for further studies into grape embryo rescue and could improve breeding efforts for new seedless grape varieties.

Reference | Related Articles | Metrics
Metabolic responses to combined water deficit and salt stress in maize primary roots
LI Peng-cheng, YANG Xiao-yi, WANG Hou-miao, PAN Ting, YANG Ji-yuan, WANG Yun-yun, XU Yang, YANG Ze-feng, XU Chen-wu
2021, 20 (1): 109-119.   DOI: 10.1016/S2095-3119(20)63242-7
Abstract144)      PDF in ScienceDirect      
Soil water deficit and salt stress are major limiting factors of plant growth and agricultural productivity.  The primary root is the first organ to perceive the stress signals for drought and salt stress.  In this study, maize plant subjected to drought, salt and combined stresses displayed a significantly reduced primary root length relative to the control plants.  GC-MS was used to determine changes in the metabolites of the primary root of maize in response to salt, drought and combined stresses.  A total of 86 metabolites were measured, including 29 amino acids and amines, 21 organic acids, four fatty acids, six phosphoric acids, 10 sugars, 10 polyols, and six others.  Among these, 53 metabolites with a significant change under different stresses were identified in the primary root, and the content of most metabolites showed down-accumulation.  A total of four and 18 metabolites showed significant up- and down-accumulation to all three treatments, respectively.  The levels of several compatible solutes, including sugars and polyols, were increased to help maintain the osmotic balance.  The levels of metabolites involved in the TCA cycle, including citric acid, ketoglutaric acid, fumaric acid, and malic acid, were reduced in the primary root.  The contents of metabolites in the shikimate pathway, such as quinic acid and shikimic acid, were significantly decreased.  This study reveals the complex metabolic responses of the primary root to combined drought and salt stresses and extends our understanding of the mechanisms involved in root responses to abiotic tolerance in maize.
 
Reference | Related Articles | Metrics
Strategies for timing nitrogen fertilization of pear trees based on the distribution, storage, and remobilization of 15N from seasonal application of (15N H4)2SO4
JIANG Hai-bo, LI Hong-xu, ZHAO Ming-xin, MEI Xin-lan, KANG Ya-long, DONG Cai-xia, XU Yang-chun
2020, 19 (5): 1340-1353.   DOI: 10.1016/S2095-3119(19)62758-9
Abstract130)      PDF in ScienceDirect      
In order to improve the management of nitrogen (N) fertilization in pear orchards, we investigated the effects of application timing on the distribution, storage, and remobilization of N in mature pear trees in a field experiment at Jingtai County, Gansu Province, China.  Nine trees were selected for the experiment and each received equal aliquots of 83.33 g N in the autumn, spring, and summer, with 15N-labeled (NH4)2SO4 used in one of the aliquots each season.  Results showed that the (15NH4)2SO4 applied in the autumn remained in the soil during the winter.  In the following spring this N was absorbed and rapidly remobilized into each organ, especially new organs (leaves, fruit and new shoots).  The 15N supplied in spring was rapidly transported to developing fruit between the young fruit and fruit enlargement stages.  15N from the summer application of fertilizer was mainly stored in the coarse roots over the winter, then was mobilized to support growth of new organs in spring.  In conclusion, for pear trees we recommend that the autumn application of N-fertilizer be soon after fruit harvest in order to increase N stores in fine roots.  Spring application should be between full bloom and the young fruit stages to meet the high N demands of developing fruit.  Summer application of fertilizer at the fruit enlargement stage does not contemporaneously affect the growth of pears, but increases the N stored in coarse roots, and in turn the amount available for remobilization in spring.
 
Reference | Related Articles | Metrics
Genome-wide identification and expression analysis of asparagine synthetase family in apple
YUAN Xi-sen, YU Zi-peng, LIU Lin, XU Yang, ZHANG Lei, HAN De-guo, ZHANG Shi-zhong
2020, 19 (5): 1261-1273.   DOI: 10.1016/S2095-3119(20)63171-9
Abstract106)      PDF in ScienceDirect      
Asparagine is an efficient nitrogen transport and storage carrier.  Asparagine synthesis occurs by the amination of aspartate which is catalyzed by asparagine synthetase (ASN) in plants.  Complete genome-wide analysis and classifications of the ASN gene family have recently been reported in different plants.  However, systematic analysis and expression profiles of these genes have not been performed in apple (Malus domestica).  Here, a comprehensive bioinformatics approach was applied to identify MdASNs in apple.  Then, plant phylogenetic tree, chromosome location, conserved protein motif, gene structure, and expression pattern of MdASNs were analyzed.  Five members were identified and distributed on 4 chromosomes with conserved GATase-7 and ASN domains.  Expression analysis indicated that all MdASNs mRNA accumulated at the highest level in reproductive organs, namely flowers or fruits, which may be associated with the redistribution of free amino acids in plant metabolic organs and reservoirs.  Additionally, most of MdASNs were dramatically up-regulated under various nitrogen supplies, especially in the aboveground part.  Taken together, MdASNs may be assigned to be responsible for the nitrogen metabolism and asparagine synthesis in apple.
Reference | Related Articles | Metrics
A comprehensive analysis of the response of the fungal community structure to long-term continuous cropping in three typical upland crops
LIU Hang, PAN Feng-juan, HAN Xiao-zeng, SONG Feng-bin, ZHANG Zhi-ming, YAN Jun, XU Yan-li
2020, 19 (3): 866-880.   DOI: 10.1016/S2095-3119(19)62630-4
Abstract115)      PDF in ScienceDirect      
Certain agricultural management practices are known to affect the soil microbial community structure; however, knowledge of the response of the fungal community structure to the long-term continuous cropping and rotation of soybean, maize and wheat in the same agroecosystem is limited.  We assessed the fungal abundance, composition and diversity among soybean rotation, maize rotation and wheat rotation systems and among long-term continuous cropping systems of soybean, maize and wheat as the effect of crop types on fungal community structure.  We compared these fungal parameters of same crop between long-term crop rotation and continuous cropping systems as the effect of cropping systems on fungal community structure.  The fungal abundance and composition were measured by quantitative real-time PCR and Illumina MiSeq sequencing.  The results revealed that long-term continuous soybean cropping increased the soil fungal abundance compared with soybean rotation, and the fungal abundance was decreased in long-term continuous maize cropping compared with maize rotation.  The long-term continuous soybean cropping also exhibited increased soil fungal diversity.  The variation in the fungal community structure among the three crops was greater than that between long-term continuous cropping and rotation cropping.  Mortierella, Guehomyces and Alternaria were the most important contributors to the dissimilarity of the fungal communities between the continuous cropping and rotation cropping of soybean, maize and wheat.  There were 11 potential pathogen and 11 potential biocontrol fungi identified, and the relative abundance of most of the potential pathogenic fungi increased during the long-term continuous cropping of all three crops.  The relative abundance of most biocontrol fungi increased in long-term continuous soybean cropping but decreased in long-term continuous maize and wheat cropping.  Our results indicate that the response of the soil fungal community structure to long-term continuous cropping varies based upon crop types.
Reference | Related Articles | Metrics
Nutritional evaluation of different cultivars of potatoes (Solanum tuberosum L.) from China by grey relational analysis (GRA) and its application in potato steamed bread making
ZHOU Liang, MU Tai-hua, MA Meng-mei, ZHANG Ruo-fang, SUN Qing-hua, XU Yan-wen
2019, 18 (1): 231-245.   DOI: 10.1016/S2095-3119(18)62137-9
Abstract271)      PDF in ScienceDirect      
Chemical composition (moisture, protein, starch, ash, fiber, fat), vitamins (vitamin C, vitamin B1, vitamin B2), total polyphenol content, antioxidant capacity, minerals, and amino acid of 14 potato cultivars in China were evaluated.  The results indicated that all parameters varied significantly among different potato cultivars.  The total starch, crude protein and fat content ranged between 57.42–67.83%, 10.88–14.10% and 0.10–0.73% dry weight (DW), respectively.  Moreover, the consumption of potato increased remarkably the dietary intake of vitamins, K, Mn and Cu.  In addition, the chemical score of amino acid varied considerably between different cultivars, which ranged from 54 (Neida 3 and Neida 41) to 71 (Neida 34).  Grey relational analysis (GRA) indicated that Neida 26 exhibited the most comprehensive nutritional values among potato cultivars, followed by Neida 42.  Different potato flours had a significant effect on the quality parameters of potato steamed bread (PSB), Neida 26 and Neida 34 were more suitable for making PSB.
Reference | Related Articles | Metrics
BRITTLE CULM16 (BRITTLE NODE) is required for the formation of secondary cell walls in rice nodes
WANG Ying, REN Yu-long, CHEN Sai-hua, XU Yang, ZHOU Kun-neng, ZHANG Long, MING Ming, WU Fu-qing, LIN Qi-bing, WANG Jiu-lin, GUO Xiu-ping, ZHANG Xin, LEI Cai-lin, CHENG Zhi-jun, WAN Jian-min
2017, 16 (06): 1286-1293.   DOI: 10.1016/S2095-3119(16)61536-8
Abstract958)      PDF in ScienceDirect      
Plant cell walls constitute the skeletal structures of plant bodies, and thus confer lodging resistance for grain crops.  While the basic cell wall synthesis machinery is relatively well established now, our understanding of how the process is regulated remains limited and fragmented.  In this study, we report the identification and characterization of the novel rice (Oryza sativa L.) brittle culm16 (brittle node; bc16) mutant.  The brittle node phenotype of the bc16 mutant appears exclusively at nodes, and resembles the previously reported bc5 mutant.  Combined histochemical staining and electron microscopy assays revealed that in the bc16 mutant, the secondary cell wall formation and thickening of node sclerenchyma tissues are seriously affected after heading.  Furthermore, cell wall composition assays revealed that the bc16 mutation led to a significant reduction in cellulose and lignin contents.  Using a map-based cloning approach, the bc16 locus is mapped to an approximately 1.7-Mb region of chromosome 4.  Together, our findings strengthen evidence for discretely spatial differences in the secondary cell wall formation within plant bodies.
Reference | Related Articles | Metrics
Soil CO2 Emissions as Affected by 20-Year Continuous Cropping in Mollisols
YOU Meng-yang, YUAN Ya-ru, LI Lu-jun, XU Yan-li , HAN Xiao-zeng
2014, 13 (3): 615-623.   DOI: 10.1016/S2095-3119(13)60719-4
Abstract1761)      PDF in ScienceDirect      
Long-term continuous cropping of soybean (Glycine max), spring wheat (Triticum aesativum) and maize (Zea mays) is widely practiced by local farmers in northeast China. A field experiment (started in 1991) was used to investigate the differences in soil carbon dioxide (CO2) emissions under continuous cropping of the three major crops and to evaluate the relationships between CO2 fluxes and soil temperature and moisture for Mollisols in northeast China. Soil CO2 emissions were measured using a closed-chamber method during the growing season in 2011. No remarkable differences in soil organic carbon were found among the cropping systems (P>0.05). However, significant differences in CO2 emissions from soils were observed among the three cropping systems (P<0.05). Over the course of the entire growing season, cumulative soil CO2 emissions under different cropping systems were in the following order: continuous maize ((829±10) g CO2 m-2)>continuous wheat ((629±22) g CO2 m-2)>continuous soybean ((474±30) g CO2 m-2). Soil temperature explained 42-65% of the seasonal variations in soil CO2 flux, with a Q10 between 1.63 and 2.31; water-filled pore space explained 25-47% of the seasonal variations in soil CO2 flux. A multiple regression model including both soil temperature (T, °C) and water-filled pore space (W, %), log(f)=a+bT log(W), was established, accounting for 51-66% of the seasonal variations in soil CO2 flux. The results suggest that soil CO2 emissions and their Q10 values under a continuous cropping system largely depend on crop types in Mollisols of Northeast China.
Reference | Related Articles | Metrics
Barley and Wheat Share the Same Gene Controlling the Short Basic Vegetative Period
Lü Rui-hua, XU Yan-hao, Rodger Boyd, ZHANG Xiao-qi, Sue Broughton, Michael Jones, LI Cheng-dao, CHEN Yao-feng
2013, 12 (10): 1703-1711.   DOI: 10.1016/S2095-3119(13)60351-2
Abstract1460)      PDF in ScienceDirect      
Basic vegetative period (BVP) is an important trait for determining flowering time and adaptation to variable environments. A short BVP barley mutant is about 30 d shorter than its wild type. Genetic analysis using 557 F2 individuals revealed that the short BVP is governed by a single recessive gene (BVP-1) and was further validated in 2 090 F3 individuals. The BVP-1 gene was first mapped to barley chromosome 1H using SSR markers. Comparative genomic analysis demonstrated that the chromosome region of BVP-1 is syntenic to rice chromosome 5 and Brachypodium chromosome 2. Barley ESTs/genes were identified after comparison with candidate genes in rice and Brachypodium; seven new gene-specific markers were developed and mapped in the mapping populations. The BVP-1 gene co-segregated with the Mot1 and Ftsh4 genes and was flanked by the gene-specific markers AK252360 (0.2 cM) and CA608558 (0.5 cM). Further analysis demonstrated that barley and wheat share the same short BVP gene controlling early flowering.
Reference | Related Articles | Metrics
Metabolite of Clostridium perfringens type A, palmitic acid, enhances porcine enteric coronavirus porcine epidemic diarrhea virus infection
Shanshan Qi, Haoyang Wu, Donghua Guo, Dan Yang, Yongchen Zhang, Ming Liu, Jingxuan Zhou, Jun Wang, Feiyu Zhao, Wenfei Bai, Shiping Yu, Xu Yang, Hansong, Li, Fanbo Shen, Xingyang Guo, Xinglin Wang, Wei Zhou, Qinghe Zhu, Xiaoxu Xing, Chunqiu Li, Dongbo Sun
DOI: 10.1016/j.jia.2024.05.014 Online: 31 May 2024
Abstract57)      PDF in ScienceDirect      
The host intestinal microbiota has emerged as the third element in the interactions between hosts and enteric viruses, and potentially affects the infection processes of enteric viruses. However, the interaction of porcine enteric coronavirus with intestinal microorganisms during infection remains unclear. In this study, we used 16S-rRNA-based Illumina NovaSeq high-throughput sequencing to identify the changes in the intestinal microbiota of piglets mediated by porcine epidemic diarrhea virus (PEDV) infection and the effects of the alterations in intestinal bacteria on PEDV infection and its molecular mechanisms. The intestinal microbiota of PEDV-infected piglets had significantly less diversity than the healthy group and different bacterial community characteristics. Among the altered intestinal bacteria, the relative abundance of Clostridium perfringens was significantly increased in the PEDV-infected group. A strain of C. perfringens type A, named DQ21, was successfully isolated from the intestines of healthy piglets. The metabolites of swine C. perfringens type A strain DQ21 significantly enhanced PEDV replication in porcine intestinal epithelial cell clone J2 (IPEC-J2) cells, and PEDV infection and pathogenicity in suckling piglets. Palmitic acid (PA) was identified as one of those metabolites with metabolomic technology, and significantly enhanced PEDV replication in IPEC-J2 cells and PEDV infection and pathogenicity in suckling piglets. PA also increased the neutralizing antibody titer in the immune sera of mice. Furthermore, PA mediated the palmitoylation of the PEDV S protein, which improved virion stability and membrane fusion, thereby enhancing viral infection. Overall, our study demonstrates a novel mechanism of PEDV infection, with implications for PEDV pathogenicity.
Reference | Related Articles | Metrics
The constructed high-density genetic map helps to explore the genetic regulation of erucic acid, oleic acid, and linolenic acid contents in Brassica juncea
Wei Yan, Jinze Zhang, Yingfen Jiang, Kunjiang Yu, Qian Wang, Xu Yang, Lijing Xiao, Entang Tian
DOI: 10.1016/j.jia.2024.11.028 Online: 13 November 2024
Abstract11)      PDF in ScienceDirect      

Rapeseed mustard (Brassica juncea L.) is the third most important oilseed crop in the world but the genetic mechanism underlying its massive phenotypic variation remains largely unexplored. In this study, specific length amplified fragment sequencing (SLAF-Seq) was used to resequence a population comprising 197 F8 recombinant inbred lines (RILs), derived from a cross between vegetable-type Qichi881 and oilseed-type YufengZC in B. juncea. In total, 438,895 high-quality SLAFs were discovered, of which 47,644 were polymorphic, and 3,887 of the polymorphic markers met the requirements for genetic map construction. The final map included 3,887 markers on 18 linkage groups and was 1,830.23 cM in length, with an average distance of 0.47 cM between adjacent markers. Using the newly constructed high-density genetic map, a total of 53 QTLs for erucic acid (EA), oleic acid (OA), and linolenic acid (LNA) were detected and integrated into 8 consensus QTLs with two for each of these traits. For each of these three traits, two candidate genes were cloned and sequence analyzed, indicating colocalization with their respective consensus QTLs. The co-dominant allele-specific markers for Bju.FAD3.A03 and Bju.FAD3.B07 were developed and showed co-localization with their consensus QTL and co-segregation with LNA content, further supporting the results of QTL mapping and bioinformatic analysis. The expression level for the cloned homologous genes was also identified, which was tightly correlated with the EA, OA and LNA contents of different lines. The results would facilitate the improvement of fatty acid traits and molecular breeding of B. juncea. More use of the high-density genetic map created in this study is also discussed. 

Reference | Related Articles | Metrics