Analysis of sex pheromone production and field trapping of the Asian corn borer (Ostrinia furnacalis Guenée) in Xinjiang, China
Identifying the sex pheromone systems of local pest populations facilitates their management, especially for moth species that show significant geographic variation in sex pheromone communication. We investigated the pheromone production and behavioral responses of the Asian corn borer (Ostrinia furnacalis Guenée; ACB) in Xinjiang, China. The ACB produces three compounds: (Z)-12-tetradecenyl acetate (Z12-14:Ac) and (E)-12-tetradecenyl acetate (E12-14:Ac) which are two sex pheromone compounds, and n-tetradecyl acetate (14:Ac) which has variable roles in mediating behavioral responses. The ratios of these three compounds produced in female gland are geographically distinct among different populations. Quantitative analysis of pheromone production showed that the proportions of Z12-14:Ac in the E/Z isomers (i.e., Z and E12-14:Ac) and the proportions of 14:Ac in the ternary blend respectively averaged 60.46% (SD=5.26) and 25.00% (SD=7.37), with their probabilities normally or near-normally distributed. Trapping experiments in a cornfield indicated that deploying the E/Z isomers and the three compounds in rubber septa close to their gland ratios yielded the most captured males, while other ratios that deviated from the gland ratios showed reduced field captures. The ternary blend was significantly more attractive to males than the E/Z isomers in the field, indicating a functional role of 14:Ac as the third pheromone component used by the local population. Additionally, the dose-response test demonstrated that the application of the three compounds at dosages between 200 and 350 μg attracted significantly more males compared to other dosages. Therefore, the characterization of this local ACB pheromone system provides additional information about its geographic variation and serves as a basis for optimizing the pheromone-mediated control of this pest in Xinjiang.
Efficient and stable expression of foreign genes in cells and transgenic animals is important for gain-of-function studies and the establishment of bioreactors. Safe harbor loci in the animal genome enable consistent overexpression of foreign genes, without side effects. However, relatively few safe harbor loci are available in pigs, a fact which has impeded the development of multi-transgenic pig research. We report a strategy for efficient transgene knock-in in the endogenous collagen type I alpha 1 chain (COL1A1) gene using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system. After the knock-in of a 2A peptide-green fluorescence protein (2A-GFP) transgene in the last codon of COL1A1 in multiple porcine cells, including porcine kidney epithelial (PK15), porcine embryonic fibroblast (PEF) and porcine intestinal epithelial (IPI-2I) cells, quantitative PCR (qPCR), Western blotting, RNA-seq and CCK8 assay were performed to assess the safety of COL1A1 locus. The qPCR results showed that the GFP knock-in had no effect (P=0.29, P=0.66 and P=0.20 for PK15, PEF and IPI-2I cells, respectively) on the mRNA expression of COL1A1 gene. Similarly, no significant differences (P=0.64, P=0.48 and P=0.80 for PK15, PEF and IPI-2I cells, respectively) were found between the GFP knock-in and wild type cells by Western blotting. RNA-seq results revealed that the transcriptome of GFP knock-in PEF cells had a significant positive correlation (P<2.2e–16) with that of the wild type cells, indicating that the GFP knock-in did not alter the global expression of endogenous genes. Furthermore, the CCK8 assay showed that the GFP knock-in events had no adverse effects (P24h=0.31, P48h=0.96, P72h=0.24, P96h=0.17, and P120h=0.38) on cell proliferation of PK15 cells. These results indicate that the COL1A1 locus can be used as a safe harbor for foreign genes knock-in into the pig genome and can be broadly applied to farm animal breeding and biomedical model establishment