Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails

Dynamics and genetic regulation of macronutrient concentrations during grain development in maize

Pengcheng , Shuangyi Yin, Yunyun Wang, Tianze Zhu, Xinjie Zhu, Minggang Ji, Wenye Rui, Houmiao Wang Chenwu Xu, Zefeng Yang
2024, 23 (3): 781-794.   DOI: 10.1016/j.jia.2023.11.003
Abstract157)      PDF in ScienceDirect      

Nitrogen (N), phosphorus (P), and potassium (K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality.  The genetic basis of macronutrient dynamics and accumulation during grain filling in maize remains largely unknown.  In this study, we evaluated grain N, P, and K concentrations in 206 recombinant inbred lines generated from a cross of DH1M and T877 at six time points after pollination.  We then calculated conditional phenotypic values at different time intervals to explore the dynamic characteristics of the N, P, and K concentrations.  Abundant phenotypic variations were observed in the concentrations and net changes of these nutrients.  Unconditional quantitative trait locus (QTL) mapping revealed 41 non-redundant QTLs, including 17, 16, and 14 for the N, P, and K concentrations, respectively.  Conditional QTL mapping uncovered 39 non-redundant QTLs related to net changes in the N, P, and K concentrations.  By combining QTL, gene expression, co-expression analysis, and comparative genomic data, we identified 44, 36, and 44 candidate genes for the N, P, and K concentrations, respectively, including GRMZM2G371058 encoding a Dof-type zinc finger DNA-binding family protein, which was associated with the N concentration, and GRMZM2G113967 encoding a CBL-interacting protein kinase, which was related to the K concentration.  The results deepen our understanding of the genetic factors controlling N, P, and K accumulation during maize grain development and provide valuable genes for the genetic improvement of nutrient concentrations in maize.

Reference | Related Articles | Metrics
Construction of SNP genetic maps based on targeted next-generation sequencing and QTL mapping of vital agronomic traits in faba bean (Vicia faba L.)
LI Meng-wei, HE Yu-hua, LIU Rong, LI Guan, WANG Dong, JI Yi-shan, YAN Xin, HUANG Shu-xian, WANG Chen-yu, MA Yu, LIU Bei, YANG Tao, ZONG Xu-xiao
2023, 22 (9): 2648-2659.   DOI: 10.1016/j.jia.2023.01.003
Abstract237)      PDF in ScienceDirect      
Owing to the limitation of a large genome size (~13 Gb), the genetic and gene mapping studies on faba bean (Vicia faba L.) are lagging far behind those for other legumes.  In this study, we selected three purified faba bean lines (Yundou 8137, H0003712, and H000572) as parents and constructed two F2 populations.  These two F2 populations, namely 167 F2 plants in Pop1 (Yundou 8137×H0003712) and 204 F2 plants in Pop2 (H000572×Yundou 8137), were genotyped using a targeted next-generation sequencing (TNGS) genotyping platform, and two high-density single nucleotide polymorphisms (SNP) genetic linkage maps of faba bean were constructed.  The map constructed from Pop1 contained 5 103 SNPs with a length of 1 333.31 cM and an average marker density of 0.26 cM.  The map constructed from Pop2 contained 1 904 SNPs with a greater length of 1 610.61 cM.  In these two F2 populations, QTL mapping identified 98 QTLs for 14 agronomic traits related to the flowers, pods, plant types and grains.  The two maps were then merged into an integrated genetic linkage map containing 6 895 SNPs, with a length of 3 324.48 cM.  These results not only lay the foundation for fine mapping and map-based cloning of related genes, but can also accelerate the molecular marker-assisted breeding of faba bean.
Reference | Related Articles | Metrics
Increasing nitrogen absorption and assimilation ability under mixed NO3 and NH4+ supply is a driver to promote growth of maize seedlings
WANG Peng, WANG Cheng-dong, WANG Xiao-lin, WU Yuan-hua, ZHANG Yan, SUN Yan-guo, SHI Yi, MI Guo-hua
2023, 22 (6): 1896-1908.   DOI: 10.1016/j.jia.2023.04.037
Abstract202)      PDF in ScienceDirect      

Compared with sole nitrate (NO3) or sole ammonium (NH4+) supply, mixed nitrogen (N) supply may promote growth of maize seedlings.  Previous study suggested that mixed N supply not only increased photosynthesis rate, but also enhanced leaf growth by increasing auxin synthesis to build a large sink for C and N utilization.  However, whether this process depends on N absorption is unknown.  Here, maize seedlings were grown hydroponically with three N forms (NO3 only, 75/25 NO3/NH4+ and NH4+ only).  The study results suggested that maize growth rate and N content of shoots under mixed N supply was little different to that under sole NO3 supply at 0–3 d, but was higher than under sole NO3 supply at 6–9 d.  15N influx rate under mixed N supply was greater than under sole NO3 or NH4+ supply at 6–9 d, although NO3 and NH4+ influx under mixed N supply were reduced compared to sole NO3 and NH4+ supply, respectively.  qRT-PCR determination suggested that the increased N absorption under mixed N supply may be related to the higher expression of NO3 transporters in roots, such as ZmNRT1.1A, ZmNRT1.1B, ZmNRT1.1C, ZmNRT1.2 and ZmNRT1.3, or NH4+ absorption transporters, such as ZmAMT1.1A, especially the latter.  Furthermore, plants had higher nitrate reductase (NR) glutamine synthase (GS) activity and amino acid content under mixed N supply than when under sole NO3 supply.  The experiments with inhibitors of NR reductase and GS synthase further confirmed that N assimilation ability under mixed N supply was necessary to promote maize growth, especially for the reduction of NO3 by NR reductase.  This research suggested that the increased processes of NO3 and NH4+ assimilation by improving N-absorption ability of roots under mixed N supply may be the main driving force to increase maize growth.


Reference | Related Articles | Metrics
Intelligent diagnosis of northern corn leaf blight with deep learning model
PAN Shuai-qun, QIAO Jing-fen, WANG Rui, YU Hui-lin, WANG Cheng, Kerry TAYLOR, PAN Hong-yu
2022, 21 (4): 1094-1105.   DOI: 10.1016/S2095-3119(21)63707-3
Abstract213)      PDF in ScienceDirect      
Maize (Zea mays L.), also known as corn, is the third most cultivated crop in the world.  Northern corn leaf blight (NCLB) is a globally devastating maize foliar disease caused by Setosphaeria turcica (Luttrell) Leonard and Suggs.  Early intelligent diagnosis and warning is an effective and economical strategy to control this disease.  Today, deep learning is beginning to play an essential role in agriculture.  Notably, deep convolutional neural networks (DCNN) are amongst the most successful machine learning techniques in plant disease detection and diagnosis.  Our study aims to identify NCLB in the maize-producing area in Jilin Province based on several DCNN models.  We established a database of 985 leaf images of healthy and infected maize and applied data augmentation techniques including image segmentation, image resizing, image cropping, and image transformation, to expand to 30 655 images.  Several proven convolutional neural networks, such as AlexNet, GoogleNet, VGG16, and VGG19, were then used to identify diseases.  Based on the best performance of the DCNN pre-trained model GoogleNet, some of the recent loss functions developed for deep facial recognition tasks such as ArcFace, CosFace, and A-Softmax were applied to detect NCLB.  We found that a pre-trained GoogleNet architecture with the Softmax loss function can achieve an excellent accuracy of 99.94% on NCLB diagnosis.  The analysis was implemented in Python with two deep learning frameworks, Pytorch and Keras.  The techniques, training, validation, and test results are presented in this paper.  Overall, our study explores intelligent identification technology for NCLB and effectively diagnoses NCLB from images of maize.
Reference | Related Articles | Metrics
Expression profiles of Cry1Ab protein and its insecticidal efficacy against the invasive fall armyworm for Chinese domestic GM maize DBN9936
LIANG Jin-gang, ZHANG Dan-dan, LI Dong-yang, ZHAO Sheng-yuan, WANG Chen-yao, XIAO Yu-tao, XU Dong, YANG Yi-zhong, LI Guo-ping, WANG Li-li, GAO Yu, YANG Xue-qing, YUAN Hai-bin, LIU Jian, ZHANG Xiu-jie, WU Kong-ming
2021, 20 (3): 792-803.   DOI: 10.1016/S2095-3119(20)63475-X
Abstract164)      PDF in ScienceDirect      
The fall armyworm (FAW) Spodoptera frugiperda, which originated in the Americas, is advancing across China and threatening the nation’s maize crops.  Currently, one widely used tool for its control is genetically modified (GM) Bacillus thuringiensis (Bt) maize.  Sufficient content of Bt protein in appropriate plant parts is crucial for enhancing resistance against insect pests.  In this study, we conducted a systematic investigation of Cry1Ab levels in Chinese domestic GM maize DBN9936, which has recently obtained a biosafety certificate, and evaluated its efficacy against FAW.  Quantification of expression levels of Cry1Ab, via ELISA, indicated a spatio-temporal dynamic, with significant variation of mean Cry1Ab, ranging from 0.76 to 8.48 μg g–1 FW with the Cry1Ab protein level ranked as: V6–V8 leaf>R1 leaf>R4 leaf>R1 silk>VT tassel>R4 kernel.  Among the nine locations, the Cry1Ab levels in DBN9936 of the Xinxiang, Langfang, and Harbin fields were significantly lower than those from Wuhan and Shenyang, and were slightly, but not significantly lower than those from the other four fields.  Furthermore, the artificial diet–Cry1Ab mixture and plant tissue feeding bioassays revealed that DBN9936 has high efficacy against FAW.  The insecticidal efficacy of different tissues against FAW larvae reached 34–100% with a descending order of lethality as follows: VT leaf>R4 leaf>R1 husk>R1 silk>VT tassel>R4 kernel.  Taken together, our results showed that Bt-Cry1Ab maize DBN9936 has potential as a promising strategy to manage FAW.
 
Reference | Related Articles | Metrics
Distribution and accumulation of zinc and nitrogen in wheat grain pearling fractions in response to foliar zinc and soil nitrogen applications
ZHANG Pan-pan, CHEN Yu-lu, WANG Chen-yang, MA Geng, LÜ Jun-jie, LIU Jing-bao, GUO Tian-cai
2021, 20 (12): 3277-3288.   DOI: 10.1016/S2095-3119(20)63491-8
Abstract165)      PDF in ScienceDirect      
Increasing zinc (Zn) concentration in wheat grain is important to minimize human dietary Zn deficiency.  This study aimed to investigate the effect of foliar Zn and soil nitrogen (N) applications on the accumulation and distribution of N and Zn in grain pearling fractions, N remobilization, and the relationships between nutrient concentration in the vegetative tissues and grain or its fractions in two cropping years in the North China Plain.  The results showed a progressive decrease in N and Zn concentrations from the outer to the inner parts of grain, with most of the accumulation in the core endosperm.  Foliar Zn application significantly increased N concentration in the pericarp, and soil N application increased N concentration in each grain fraction.  Both treatments significantly increased core endosperm Zn concentration.  Foliar Zn had no effect on grain N and Zn distribution.  Soil N application made N concentrated in the aleurone, promoted Zn translocation to the core endosperm and also increased N remobilization and its efficiency from the shoot to the grain, but no improved contribution to grain was found.  N concentration in grain and its fractions were positively correlated with N in vegetative organs at anthesis and maturity, while positive correlations were obtained between N concentration in the pericarp and progressive central area of the endosperm and Zn concentration in the core endosperm.  Thus, foliar Zn and soil N applications effectively increased yield and N and Zn concentrations in the wheat grain, particularly in the endosperm, and could be promising strategies to address Zn deficiency.
 
Reference | Related Articles | Metrics
The effects of water and nitrogen on the roots and yield of upland and paddy rice
ZHANG Ya-jie, XU Jing-nan, CHENG Ya-dan, WANG Chen, LIU Gao-sheng, YANG Jian-chang
2020, 19 (5): 1363-1374.   DOI: 10.1016/S2095-3119(19)62811-X
Abstract109)      PDF in ScienceDirect      
It is of great significance to study the root characteristics of rice to improve water and nitrogen (N) use efficiency and reduce environmental pollution.  This study investigated whether root traits and architecture of rice influence grain yield, as well as water and N utilization efficiency.  An experiment was conducted using the upland rice cultivar Zhonghan 3 (a japonica cultivar) and paddy rice cultivar Huaidao 5 (also a japonica cultivar) using three N levels, namely, 2 g urea/pot (low amount, LN), 3 g urea/pot (normal amount, NN), and 4 g urea/pot (high amount, HN), and three soil water potentials (SWPs, namely, well-watered (0 kPa), mildly dried (–20 kPa) and severely dried (–40 kPa).  The results showed that with decreasing SWP, the percentage of upland rice roots increased in the 0–5 cm tillage layer, and decreased in the 5–10 and 10–20 cm tillage layers, whereas paddy rice roots showed the opposite trend.  With increasing amounts of N, the yield of upland and paddy rice increased, and the percentage of root volume ratios of the two rice cultivars in the 0–5 and 5–10 cm tillage layers increased, whereas that in the 10–20 cm tillage layer decreased.  The roots of upland rice are mainly distributed in the 10–20 cm tillage layer, whereas most paddy rice roots are in the 0–5 cm tillage layer.  These results indicate that the combination of −20 kPa SWP and NN in upland rice and 0 kPa SWP and LN in paddy rice promotes the growth of the root system during the middle and late stages, which in turn may decrease the requirements for water and N fertilizer and increase rice yield. 
 
Reference | Related Articles | Metrics
Effects of reduced nitrogen and suitable soil moisture on wheat (Triticum aestivum L.) rhizosphere soil microbiological, biochemical properties and yield in the Huanghuai Plain, China
ZHOU Su-mei, ZHANG Man, ZHANG Ke-ke, YANG Xi-wen, HE De-xian, YIN Jun, WANG Chen-yang
2020, 19 (1): 234-250.   DOI: 10.1016/S2095-3119(19)62697-3
Abstract139)      PDF in ScienceDirect      
Soil management practices affect rhizosphere microorganisms and enzyme activities, which in turn influence soil ecosystem processes. The objective of this study was to explore the effects of different nitrogen application rates on wheat (Triticum aestivum L.) rhizosphere soil microorganisms and enzyme activities, and their temporal variations in relation to soil fertility under supplemental irrigation conditions in a fluvo-aquic region. For this, we established a split-plot experiment for two consecutive years (2014–2015 and 2015–2016) in the field with three levels of soil moisture: water deficit to no irrigation (W1), medium irrigation to (70±5)% of soil relative moisture after jointing stage (W2), and adequate irrigation to (80±5)% of soil relative moisture after jointing stage (W3); and three levels of nitrogen: 0 kg ha–1 (N1), 195 kg ha–1 (N2) and
270 kg ha–1 (N3).  Results showed that irrigation and nitrogen application significantly increased rhizosphere microorganisms and enzyme activities.  Soil microbiological properties showed different trends in response to N level; the highest values of bacteria, protease, catalase and phosphatase appeared in N2, while the highest levels of actinobacteria, fungi and urease were observed in N3.  In addition, these items performed best under medium irrigation (W2) relative to W1 and W3; particularly the maximum microorganism (bacteria, actinobacteria and fungi) amounts appeared at W2, 5.37×107 and 6.35×107 CFUs g–1 higher than those at W3 in 2014–2015 and 2015–2016, respectively; and these changes were similar in both growing seasons.  Microbe-related parameters fluctuated over time but their seasonality did not hamper the irrigation and fertilization-induced effects.  Further, the highest grain yields of 13 309.2 and 12 885.7 kg ha–1 were both obtained at W2N2 in 2014–2015 and 2015–2016, respectively.  The selected properties, soil microorganisms and enzymes, were significantly correlated with wheat yield and proved to be valuable indicators of soil quality.  These results clearly demonstrated that the combined treatment (W2N2) significantly improved soil microbiological properties, soil fertility and wheat yield on the Huanghuai Plain, China.
Reference | Related Articles | Metrics
Mitochondrial DNA diversity and origin of indigenous pigs in South China and their contribution to western modern pig breeds
WANG Chen, CHEN Yao-sheng, HAN Jian-lin, MO De-lin, LI Xiu-jin, LIU Xiao-hong
2019, 18 (10): 2338-2350.   DOI: 10.1016/S2095-3119(19)62731-0
Abstract139)      PDF in ScienceDirect      
Indigenous pigs in South China are valuable genetic resources with many specific and unique characters, which have played an important role in the establishment of some western modern pig breeds.  However, the origin and genetic diversity of indigenous pigs in South China have not been fully understood.  In the present study, we sequenced 534 novel mitochondrial DNA (mtDNA) D-loop and assembled 54 complete mitogenome sequences for all 17 indigenous pig breeds from Fujian, Guangdong, Guangxi and Hainan in South China.  These data were analyzed together with previously published homologous sequences relevant to this study.  We found that all 13 coding genes of the mitogenomes were under purifying selection, but ND1 had the most variable sites and CYTB contained the most non-synonymous SNPs.  Phylogenetic analysis showed that all indigenous pigs in South China were clustered into the D haplogroup with D1a1, D1b, D1c and D1e sub-haplogroups found to be dominant.  Haplotype and nucleotide diversities of D-loop sequences ranged from 0.427 to 0.899 and from 0.00342 to 0.00695, respectively, among which all pigs in Guangdong had the lowest diversity.  The estimates of pairwise FST, gene flow (Nm) and genetic distance (Da) indicated that most of these indigenous pig breeds differentiated from each other significantly (P<0.05).  Among the western modern breeds, Berkshire and Yorkshire had significant Asian matrilineal footprints from indigenous pigs in South China, especially the Spotted pigs distributed in Guangdong and Guangxi.  The neutrality test (Fu’s FS) indicated that indigenous pigs from Fujian and Guangxi had gone through recent population expansion events (P<0.05).  It is concluded that indigenous pigs in South China were most likely derived from the Mekong region and the middle and downstream regions of Yangtze River through Guangxi and Fujian.  Our findings provide a complete and in-depth insight on the origin and distribution pattern of maternal genetic diversity of indigenous pigs in South China.
Reference | Related Articles | Metrics
One size fits all?  Contract farming among broiler producers in China
HUANG Ze-ying, XU Ying, ZENG Di, WANG Chen, WANG Ji-min
2018, 17 (2): 473-482.   DOI: 10.1016/S2095-3119(17)61752-0
Abstract819)      PDF in ScienceDirect      
Contract farming has been increasingly found to benefit smallholders in developing countries, yet much less is known about its role in the poultry industry where economies of scale could be more prominent.  This study aims to narrow this gap by analysing the choice of contract farming among Chinese broiler producers using a nationally representative survey.  Simply cost-benefit analysis and multinomial logit regression modelling are jointly employed to explain contract farming decision making especially among small producers.  In contrast to many recent studies, we find that small producers, though not passively excluded, usually opt out of contract farming due to limited profitability when large producers are coexistent.  Such relationship is appropriately identified through a control function approach to correct for possible endogeneity.  Therefore, contract farming may not help achieve higher welfare goals for small broiler producers who actually instead seek alternative market opportunities that better realise their comparative advantages. 
Reference | Related Articles | Metrics
Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts
LIU Hui, LIU Chang, ZHAO Yu-hang, HAN Xue-jie, ZHOU Zheng-wei, WANG Chen, LI Rong-feng, LI Xue-ling
2018, 17 (2): 406-414.   DOI: 10.1016/S2095-3119(17)61748-9
Abstract762)      PDF in ScienceDirect      
This study aimed to compare the efficiencies of clustered regulatory interspaced short palindromic repeat (CRISPR)/Cas9-mediated gene knock-ins with zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) in bovine and dairy goat fetal fibroblasts.  To test the knock-in efficiency, a set of ZFNs and CRISPR/Cas9 plasmids were designed to edit the bovine myostatin (MSTN) gene at exon 2, while a set of TALENs and CRISPR/Cas9 plasmids were designed for editing the dairy goat β-casein gene at exon 2.  Donor plasmids utilizing the ZFNs, TALENs, and CRISPR/Cas9 cutting sites were constructed in the GFP-PGK-NeoR plasmid background, including a 5´ and 3´ homologous arm flanking the genes humanized Fat-1 (hFat-1) or enhanced green fluorescent protein (eGFP).  Subsequently, the ZFNs, TALENs, or CRISPR/Cas9 and the hFat-1 or eGFP plasmids were co-transfected by electroporation into bovine and dairy goat fetal fibroblasts.  After G418 (Geneticin) selection, single cells were obtained by mouth pipetting, flow cytometry or a cell shove.  The gene knock-in events were screened by PCR across the homologous arms.  The results showed that in bovine fetal fibrobalsts, the efficiencies of ZFNs-mediated eGFP and hFat-1 gene knock-ins were 13.68 and 0%, respectively.  The efficiencies of CRISPR/Cas9-mediated eGFP and hFat-1 gene knock-ins were 77.02 and 79.01%, respectively.  The eGFP gene knock-in efficiency using CRISPR/Cas9 was about 5.6 times higher than when using the ZFNs gene editing system.  Additionally, the hFat-1 gene knock-in was only obtained when using the CRISPR/Cas9 system.  The difference of knock-in efficiencies between the ZFNs and CRISPR/Cas9 systems were extremely significant (P<0.01).  In the dairy goat fetal fibroblasts, the efficiencies of TALENs-mediated eGFP and hFat-1 gene knock-ins were 32.35 and 26.47%, respectively.  The efficiencies of eGFP and hFat-1 gene knock-ins using CRISPR/Cas9 were 70.37 and 74.29%, respectively.  The knock-in efficiencies difference between the TALENs and CRISPR/Cas9 systems were extremely significant (P<0.01).  This study demonstrated that CRISPR/Cas9 was more efficient at gene knock-ins in domesticated animal cells than ZFNs and TALENs.  The CRISPR/Cas9 technology offers a new era of precise gene editing in domesticated animal cell lines. 
Reference | Related Articles | Metrics
Grain yield and water use of winter wheat as affected by water and sulfur supply in the North China Plain
XIE Ying-xin, ZHANG Hui, ZHU Yun-ji, ZHAO Li, YANG Jia-heng, CHA Fei-na, LIU Cao, WANG Chen-yang, GUO Tian-cai
2017, 16 (03): 614-625.   DOI: 10.1016/S2095-3119(16)61481-8
Abstract814)      PDF in ScienceDirect      
Water shortage has threatened sustainable development of agriculture globally as well as in the North China Plain (NCP).  Irrigation, as the most effective way to increase food production in dry land, may not be readily available in the situation of drought.  One of the alternatives is to supply plants with enough nutrients so that they can be more sustainable to the water stress.  The objective of this study was to explore effects of irrigation and sulphur (S) application on water consumption, dry matter accumulation (DMA), and grain yield of winter wheat in NCP.  Three irrigation regimes including no irrigation (rainfed, I0) during the whole growth period, once irrigation only at jointing stage (90 mm, I1), and twice respective irrigation at jointing and anthesis stages (90 mm plus 90 mm, I2), and two levels of S application including 0 (S0) and 60 kg ha–1 (S60) were designed in the field experiment in NCP.  Results showed that increasing irrigation times significantly increased mean grain yield of wheat by 12.5–23.7% and nitrogen partial factor productivity (NPFP) by 21.2–45.0% in two wheat seasons, but markedly decreased crop water use efficiency (YWUE).  Furthermore, S supply 60 kg ha–1 significantly increased mean grain yield, YWUE, IWUE and NPFP by 5.6, 6.1, 23.2, and 5.6% (across two wheat seasons), respectively.  However, we also found that role of soil moisture prior to S application was one of important greater factors on improving the absorption and utilization of storage water and nutrients of soil.  Thus, water supply is still the most important factor to restrict the growth of wheat in the present case of NCP, supplying 60 kg ha–1 S with once irrigation 90 mm at the jointing stage is a relatively appropriate recommended combination to improve grain yield and WUE of wheat when saving water resources is be considered in irrigated wheat farmlands of NCP.
Reference | Related Articles | Metrics
Assessing the concentration and potential health risk of heavy metals in China’s main deciduous fruits
NIE Ji-yun, KUANG Li-xue, LI Zhi-xia, XU Wei-hua, WANG Cheng, CHEN Qiu-sheng, LI An, ZHAO Xu-bo, XIE Han-zhong, ZHAO Duo-yong, WU Yong-long, CHENG Yang
2016, 15 (7): 1645-1655.   DOI: 10.1016/S2095-3119(16)61342-4
Abstract1754)      PDF in ScienceDirect      
To assess levels of contamination and human health risk, we analyzed the concentrations of the heavy metals lead (Pb), cadmium (Cd), chromium (Cr), and nickel (Ni) in China’s main deciduous fruits - apple, pear, peach, grape, and jujube. The concentration order of the heavy metals was Ni>Cr>Pb>Cd. In 97.5% of the samples, heavy metal concentrations were within the maximum permissible limits. Among the fruits studied, the heavy metal concentrations in jujube and peach proved to be the highest, and those in grape proved to be the lowest. Only 2.2% of the samples were polluted by Ni, only 0.4% of the samples were polluted by Pb, and no samples were polluted by Cd or Cr. Compared with the other fruits, the combined heavy metal pollution was significantly higher (P<0.05) in peach and significantly lower (P<0.05) in grape. For the combined heavy metal pollution, 96.9% of the samples were at safe level, 2.32% at warning level, 0.65% at light level, and 0.13% at moderate level. In the fruits studied, the contribution of heavy metals to the daily intake rates (DIR) followed the order of Ni>Cr>Pb>Cd. The highest DIR came from apple, while the lowest DIR came from grape. For each of the heavy metals, the total DIR from five studied fruits corresponded to no more than 1.1% of the tolerable daily intake, indicating that no significant adverse health effects are expected from the heavy metals and the fruits studied. The target hazard quotients and the total target hazard quotients demonstrated that none of the analyzed heavy metals may pose risk to consumers through the fruits studied. The highest risk was posed by apple, followed in decreasing order by peach and pear, jujube, and grape. We suggest that the main deciduous fruits (apple, pear, peach, grape, and jujube) of China’s main producing areas are safe to eat.
Reference | Related Articles | Metrics
Risk assessment and ranking of pesticide residues in Chinese pears
LI Zhi-xia, NIE Ji-yun, YAN Zhen, XU Guo-feng, LI Hai-fei, KUANG Li-xue, PAN Li-gang, XIE Han-zhong, WANG Cheng, LIU Chuan-de, ZHAO Xu-bo, GUO Yong-ze
2015, 14 (11): 2328-2339.   DOI: 10.1016/S2095-3119(15)61124-8
Abstract2376)      PDF in ScienceDirect      
The presence of pesticide residues in pears is a serious health concern. This study presents the results from a 2-year investigation (2013–2014) that used gas chromatography, GS/MS and UPLC/MS-MS to measure the levels of 104 pesticides in 310 pear samples. In 93.2% of the samples, 43 pesticides were detected, of which the maximum residue levels (MRLs) were exceeded in 2.6% of the samples. Multiple residues (two to eight compounds) were present in 69.7% of the samples; one sample contained nine pesticides and one sample contained 10. Only 6.8% of the samples did not contain residues. To assess the health risks, the pesticide residue data have been combined with daily pear consumption data for children and adult populations. A deterministic model was used to assess the chronic and acute exposures based on the Joint Meeting on Pesticide Residues (JMPR) method. A potential acute risk was demonstrated for children in the case of bifenthrin, which was found to be present at 105.36% of the acute reference dose (ARfD) value. The longterm exposure of the Chinese consumer to pesticide residues through the consumption of raw pears was far below the acceptable daily intake (ADI) criterion. Additionally, the matrix ranking scheme was used to classify risk subgroups of pesticides and pear samples. In general, 95.5% of samples were deemed to be safe and nine pesticides were classified as being of a relatively high risk. The findings indicated that the occurrence of pesticide residues in pears should not be considered a serious public health problem. Nevertheless, a more detailed study is required for vulnerable consumer groups, especially children. Continuous monitoring of pesticides in pears and tighter regulation of pesticide residue standards are recommended.
Reference | Related Articles | Metrics
Diversity of Antioxidant Content and Its Relationship to Grain Color and Morphological Characteristics in Winter Wheat Grains
MA Dong-yun, SUN De-xiang, ZUO Yi, WANG Chen-yang, ZHU Yun-ji , GUO Tian-cai
2014, 13 (6): 1258-1267.   DOI: 10.1016/S2095-3119(13)60573-0
Abstract2019)      PDF in ScienceDirect      
The current interest in the health benefits of whole wheat grain has prompted breeders to further increase the concentration of antioxidants in wheat. The objective of this study was to investigate the variation in antioxidant content among Chinese wheat grains and the relationship between antioxidants and grain color and morphological characteristics. A wide variation was observed in the total phenolic, carotenoid and flavonoid contents, as well as the antioxidant activity (AOA), of Chinese wheat varieties. Black wheat had the highest mean total phenolic, carotenoid and flavonoid contents and the highest AOA, followed by red and white wheats. The grain color parameters were significantly negatively correlated with total phenolic, carotenoid and flavonoid contents and AOA among all of the wheat varieties examined, and grain weight was also significantly negatively correlated with these traits. The same correlation between grain weight and antioxidant traits was also observed within individual groups of wheat, which indicates that grain weight may be used as an index for selecting wheat varieties with high AOA. Landraces had significantly higher flavonoid content than commercial wheat varieties. The results of this study may be useful for breeding nutrient-rich wheat varieties.
Reference | Related Articles | Metrics
Molecular Cloning, Expression Analysis and Localization of Exo70A1 Related to Self Incompatibility in Non-Heading Chinese Cabbage (Brassica campestris ssp. chinensis)
WANG Li, GE Ting-ting, PENG Hai-tao, WANG Cheng, LIU Tong-kun, HOU Xi-lin
2013, 12 (12): 2149-2156.   DOI: 10.1016/S2095-3119(13)60580-8
Abstract1314)      PDF in ScienceDirect      
The exocyst is a conserved protein complex, and required for vesicles tethering, fusion and polarized exocytosis. Exo70A1, the exocyst subunit, is essential for assembly of the exocyst complex. To better understand potential roles of Exo70A1 in non-heading Chinese cabbage (Brassica campestris ssp. chinensis), we obtained the full-length cDNA of Exo70A1 gene, which consisted of 1 917 bp and encoded a protein of 638 amino acids. BlastX showed BcExo70A1 shared 94.9% identity with Brassica oleracea var. acephala (AEI26267.1), and clustered into a same group with other homologues in B. oleracea var. acephala and Brassica napus. Subcellular localization analysis showed BcExo70A1 was localized to punctate structures in cytosol of onion epithelial cells. Results showed that BcExo70A1 was widely presented in stamens, young stems, petals, unpollinated pistils, roots and leaves of self compatible and incompatible plants. The transcripts of BcExo70A1 in non- heading Chinese cabbage declined during initial 1.5 h after incompatible pollination, while an opposite trend was presented after compatible pollination. Our study reveals that BcExo70A1 could play essential roles in plant growth and development, and is related to the rejection of self pollen in non-heading Chinese cabbage.
Reference | Related Articles | Metrics
Mapping of Quantitative Trait Loci for Adult Plant Resistance to Stripe Rust in German Wheat Cultivar Ibis 
BAI Bin, REN Yan, XIA Xian-chun, DU Jiu-yuan, ZHOU Gang, WU Ling, ZHU Hua-zhong, HEZhong-hu , WANG Cheng-she
2012, 12 (4): 528-536.   DOI: 10.1016/S1671-2927(00)8572
Abstract2188)      PDF in ScienceDirect      
The German wheat cultivar Ibis has excellent adult plant resistance (APR) to stripe rust in Gansu, a hotspot for stripe rust in China. To elucidate the genetic basis of APR to stripe rust in Ibis, 237 F3 lines derived from the cross Ibis/Huixianhong were evaluated at Tianshui, Gansu, in the 2008-2009 and 2009-2010 cropping seasons, and at Chengdu, Sichuan Province, China, in the 2009-2010 cropping season. Inoculations were conducted with a mixture of several prevalent Pst races in both locations. Maximum disease severity (MDS) data showed a continuous distribution of response, indicating quantitative nature of resistance to stripe rust in Ibis. The broad-sense heritability of MDS was 0.75 based on the mean values averaged across three environments. A total of 723 simple sequence repeat (SSR) markers were used to map the QTL for APR by inclusive composite interval mapping (ICIM). QTLs mapping to chromosomes 2BS and 6BS, designated as QYr.caas-2BS.1 and QYr.caas-6BS.1, respectively, explained 4.1-40.7% of the phenotypic variance in MDS across environments. The major effect QTL QYr.caas-2BS.1, flanked by Xgwm148 and Xwmc360, was consistently detected at all three sites as well as the averaged data over three environments, accounting for 40.7, 24.2, 5.2 and 29.9% of phenotypic variance, respectively. The molecular markers closely linked to this QTL have potential for use in marker-assisted selection and gene pyramiding to improve the durability of stripe rust resistance in wheat breeding.
Reference | Related Articles | Metrics