The first factor affecting dryland winter wheat grain yield under various mulching measures: Spike number
Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.)
Grain weight is one of the key components of wheat (Triticum aestivum L.) yield. Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs. A recombinant inbred line (RIL) population derived from a cross between W7268 and Chuanyu 12 (CY12) was employed to detect quantitative trait loci (QTLs) for thousand-grain weight (TGW), grain length (GL), grain width (GW), and the ratio of grain length to width (GLW) in six environments. Seven major QTLs, QGl.cib-2D, QGw.cib-2D, QGw.cib-3B, QGw.cib-4B.1, QGlw.cib-2D.1, QTgw.cib-2D.1 and QTgw.cib-3B.1, were consistently identified in at least four environments and the best linear unbiased estimation (BLUE) datasets, and they explained 2.61 to 34.85% of the phenotypic variance. Significant interactions were detected between the two major TGW QTLs and three major GW loci. In addition, QTgw.cib-3B.1 and QGw.cib-3B were co-located, and the improved TGW at this locus was contributed by GW. Unlike other loci, QTgw.cib-3B.1/QGw.cib-3B had no effect on grain number per spike (GNS). They were further validated in advanced lines using Kompetitive Allele Specific PCR (KASP) markers, and a comparison analysis indicated that QTgw.cib-3B.1/QGw.cib-3B is likely a novel locus. Six haplotypes were identified in the region of this QTL and their distribution frequencies varied between the landraces and cultivars. According to gene annotation, spatial expression patterns, ortholog analysis and sequence variation, the candidate gene of QTgw.cib-3B.1/QGw.cib-3B was predicted. Collectively, the major QTLs and KASP markers reported here provide valuable information for elucidating the genetic architecture of grain weight and for molecular marker-assisted breeding in grain yield improvement.
Wheat grain morphology is an important breeding target considering its impact on yield and end-use properties. However, the genetic basis of grain roundness, a major determinant of grain morphology, remains largely unexplored. In this study, an F2 and a recombinant inbred line (RIL) populations from Zhongkemai 138 (ZKM138)×Chinese Spring (CS) cross were employed to analyze the genetic basis of grain shape variation. Kompetitive Allele Specific PCR (KASP) markers were developed according to single nucleotide polymorphism (SNP) from bulked segregant exome sequencing (BSE-Seq) of F2 and Wheat 55K SNP array data online, and then were used to construct two genetic maps of F2 and RIL populations, spanning 148.89 cM (30 KASP markers) and 129.82 cM (25 KASP markers), respectively. By the traditional QTL mapping method based on these two maps, a stable quantitative trait locus (QTL) for grain roundness (GR), QGr.cib-5A, could be repeatedly highlighted in the interval of 444.8-455.5 Mb on chromosome 5A. Further conditional QTL mapping analysis revealed that grain width was the major contributor to GR at this locus. Besides, the utilization of two tightly linked markers 5A4-15 and 55k-31 showed a 96.27% transmissibility of ZKM138-derived alleles in 134 ZKM138 derivatives alongside a 7.38% increase in GR, and a 65.19% distribution of worldwide varieties. Finally, TraesCS5A02G236400, possibly encoding a hydroxyproline-rich glycoprotein family protein, was deduced to be the candidate gene. Collectively, these results provided the possibility of facilitating wheat grain shape improvement and enhancing wheat market value.
In floodplain wetlands, alterations in hydrological patterns resulting from climate change and human activities could potentially diminish the carbon sequestration capacity of the soils, thereby having a negative impact on global climate change. However, the magnitude of the influence of hydrological regime change on soil carbon remains inadequately monitored. To address this research gap, we collected 306 upper layer (0-20 cm) soil samples from the Dongting Lake floodplain between 2013 and 2022. The Random Forest (RF) algorithm was used to analyze the spatial distribution of soil organic carbon (SOC) in the upper soil layer of Dongting Lake floodplain and the impact of climate and hydrological changes in the past decade on surface SOC in the East Dongting Lake area was studied. In 2022, the SOC concentration of the Dongting Lake floodplain upper layer soil ranged from 3.34 to 17.67 g kg-1, averaging 10.43 g kg-1, with a corresponding SOC density of 2.65±0.49 kg m-2 and total SOC stock of 6.82 Tg C (2.87–13.48 Tg C). From 2013 to 2022, the SOC concentration of the upper soil layer of the East Dongting Lake area decreased from 18.37 g kg-1 to 10.82 g kg-1. This reduction could be attributed to climate and hydrological changes which reduce SOC input by reducing vegetation growth and accelerating SOC decomposition. Above 21.4 m elevation, the amount of SOC loss increased with elevation, the loss being related to the decline in Miscanthus community biomass and greater susceptibility of higher altitude areas to climate and hydrological changes. Our results highlight the need for strengthening wetland SOC management to increase SOC in the soils to help combat climate change.
Recent studies have shown that lipid metabolism is a key factor affecting anther development and male fertility. However, how plants regulating the metabolic balance of multiple lipids to ensure proper anther development and male fertility remains unclear. Analyzing lipid molecules related to anther fertility and genes responsible for their biosynthesis is crucial for understanding the physiological significance of lipid metabolism in crop fertility. In this study, we compared the transcriptome and the composition and content of lipids in anthers of two Upland cotton (Gossypium hirsutum) materials, Shida 98 (WT) and its nearly-isogenic male sterile line Shida 98A (MS). Transcriptomics analysis identified many differentially expressed genes between the two materials, with the genes of the alpha-linolenic acid metabolism pathway being the most significantly associated with the male sterility phenotype. Investigations on lipids revealed that the MS anthers over-accumulated free fatty acids (FFAs), phosphatidic acid (PA), mono- and di-galactosyldiacylglycerol (MGDG and DGDG), and had a decreased content of triacylglycerol (TAG), which was closely related to the abnormal metabolism of alpha-linolenic acid (C18:3); therefore, the major lipids containing C18:3-acyl chains, such as PA, MGDG, DGDG and TAG, are proposed to play a major role in cotton anther development. We also showed that an excessive level of MGDG and DGDG caused JA overaccumulation in MS anthers, which in turn inhibited the expression of GhFAD3 and consequently reduced the C18:3 content, presumably via a feedback regulation mechanism, ultimately affecting plant fertility. Together, our results revealed the importance of a balanced lipid metabolism in regulating the development of cotton anther and pollen and consequently male fertility.