Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Genetic dissection and validation of a stable QTL for grain roundness on chromosome 5A in bread wheat (Triticum aestivum L.)

Jiajie He1,2, Zhibin Xu1, Bo Feng1, Qiang Zhou1, Xiaofeng Liu3, Guangsi Ji4, Shaodan Guo1, Xiaoli Fan1, Tao Wang1#

1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China

2 University of Chinese Academy of Sciences, Beijing 101408, China

3 Sichuan Academy of Agricultural Sciences, Chengdu 610066, China

4 School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467044, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

小麦籽粒形态是影响产量和加工品质的一个重要育种目标。然而,籽粒圆度作为籽粒形态的主要决定因子,其遗传基础尚未得到充分研究。本研究利用以中科麦138ZKM138)与中国春(CS)构建的F2群体和重组自交系(RIL)群体,分析了籽粒形状变异的遗传基础。根据F2群体的外显子捕获测序(BSE-Seq)和小麦55K SNP芯片数据获得的单核苷酸多态性(SNP),开发了竞争性等位基因特异性PCRKASP)标记,并利用这些标记构建了F2RIL群体的遗传图谱,分别覆盖了148.89 cM30KASP标记)和129.82 cM25KASP标记)。基于以上遗传图谱,进行了QTL定位。其中,两个定位群体均稳定鉴定到同一个控制籽粒圆度的数量性状位点(QTL),QGr.cib-5A,其位于染色体5A444.8-455.5 Mb区间内。进一步的条件QTL分析显示,粒宽是圆度的主要贡献因素。此外,利用两个紧密连锁的KASP标记5A4-1555k-31检测 134ZKM138衍生群体,结果显示ZKM138衍生等位基因的传递率为96.27%GR增加了7.38%,并且该等位基因在全球小麦品种中分布达65.19%。最后,候选基因分析表明TraesCS5A02G236400为潜在候选基因,该基因编码一种羟脯氨酸富集的糖蛋白。总体而言,这些结果为促进小麦籽粒形状改良和提高小麦市场价值提供了一定的理论支撑。



Abstract  

Wheat grain morphology is an important breeding target considering its impact on yield and end-use properties.  However, the genetic basis of grain roundness, a major determinant of grain morphology, remains largely unexplored.  In this study, an F2 and a recombinant inbred line (RIL) populations from Zhongkemai 138 (ZKM138)×Chinese Spring (CS) cross were employed to analyze the genetic basis of grain shape variation.  Kompetitive Allele Specific PCR (KASP) markers were developed according to single nucleotide polymorphism (SNP) from bulked segregant exome sequencing (BSE-Seq) of F2 and Wheat 55K SNP array data online, and then were used to construct two genetic maps of F2 and RIL populations, spanning 148.89 cM (30 KASP markers) and 129.82 cM (25 KASP markers), respectively.  By the traditional QTL mapping method based on these two maps, a stable quantitative trait locus (QTL) for grain roundness (GR), QGr.cib-5A, could be repeatedly highlighted in the interval of 444.8-455.5 Mb on chromosome 5A.  Further conditional QTL mapping analysis revealed that grain width was the major contributor to GR at this locus.  Besides, the utilization of two tightly linked markers 5A4-15 and 55k-31 showed a 96.27% transmissibility of ZKM138-derived alleles in 134 ZKM138 derivatives alongside a 7.38% increase in GR, and a 65.19% distribution of worldwide varieties.  Finally, TraesCS5A02G236400, possibly encoding a hydroxyproline-rich glycoprotein family protein, was deduced to be the candidate gene.  Collectively, these results provided the possibility of facilitating wheat grain shape improvement and enhancing wheat market value.

Keywords:  wheat       grain roundness              QTL mapping              candidate gene  
Received: 08 July 2024   Online: 14 November 2024  
Fund: 

This work was supported by the National Key Research and Development Program of China (2023YFD1200400), the Key Project of Wheat Breeding in Sichuan Province (2021YFYZ0002) and the Chengdu-CAS Science and Technology Co-operation Programme. 

About author:  Jiajie He, E-mail: hejj@cib.ac.cn; #Correspondence Tao Wang, Tel: +86-28-82890308, E-mail: wangtao@cib.ac.cn

Cite this article: 

Jiajie He, Zhibin Xu, Bo Feng, Qiang Zhou, Xiaofeng Liu, Guangsi Ji, Shaodan Guo, Xiaoli Fan, Tao Wang. 2024. Genetic dissection and validation of a stable QTL for grain roundness on chromosome 5A in bread wheat (Triticum aestivum L.). Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.11.030

Ammiraju J S S, Dholakia B B, Santra D K, Singh H, Lagu M D, Tamhankar S A, Dhaliwal H S, Rao V S, Gupta V S, Ranjekar P K. 2001. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theoretical and Applied Genetics, 102, 726–732.

Assadzadeh S, Walker C, McDonald L, Panozzo J. 2022. Prediction of milling yield in wheat with the use of spectral, colour, shape, and morphological features. Biosystems Engineering, 214, 28–41.

Campbell K G, Bergman C J, Gualberto D G, Anderson J A, Giroux M J, Hareland G, Fulcher R G, Sorrells M E, Finney P L. 1999. Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Science, 39, 1184–1195.

Cao P, Liang X, Zhao H, Feng B, Xu E, Wang L, Hu Y. 2019. Identification of the quantitative trait loci controlling spike-related traits in hexaploid wheat (Triticum aestivum L.). Planta, 250, 1967–1981.

Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13, 1194–1202.

Chen G, Zhu Z, Zhang F, Zhu J. 2012. Quantitative genetic analysis station for the genetic analysis of complex traits. Chinese Science Bulletin, 57, 2721–2726.

Cheng R, Kong Z, Zhang L, Xie Q, Jia H, Yu D, Huang Y, Ma Z. 2017. Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population. Theoretical and Applied Genetics, 130, 1405–1414.

Cui F, Ding A, Li J, Zhao C, Li X, Feng D, Wang X, Wang L, Gao J, Wang H. 2011a. Wheat kernel dimensions: How do they contribute to kernel weight at an individual QTL level? Journal of Genetics, 90, 409–425.

Cui F, Li J, Ding A, Zhao C, Wang L, Wang X, Li S, Bao Y, Li X, Feng D, Kong L, Wang H. 2011b. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theoretical and Applied Genetics, 122, 1517–1536.

Cui F, Zhao C, Ding A, Li J, Wang L, Li X, Bao Y, Li J, Wang H. 2014. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theoretical and Applied Genetics, 127, 659–675.

Dholakia B B, Ammiraju J S S, Singh H, Lagu M D, Röder M S, Rao V S, Dhaliwal H S, Ranjekar P K, Gupta V S, Weber W E. 2003. Molecular marker analysis of kernel size and shape in bread wheat. Plant Breeding, 122, 392–395.

Dong C, Zhang L, Chen Z, Xia C, Gu Y, Wang J, Li D, Xie Z, Zhang Q, Zhang X, Gui L, Liu X, Kong X. 2020. Combining a new exome capture panel with an effective varBScore algorithm accelerates BSA-based gene cloning in wheat. Frontiers in Plant Science, 11, 1249.

Dong L, Wang F, Liu T, Dong Z, Li A, Jing R, Mao L, Li Y, Liu X, Zhang K, Wang D. 2014. Natural variation of TaGASR7-A1 affects grain length in common wheat under multiple cultivation conditions. Molecular Breeding, 34, 937–947.

Gegas V C, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan J H, Snape J W. 2010. A genetic framework for grain size and shape variation in wheat. The Plant Cell, 22, 1046–1056.

Geng J, Li L, Lv Q, Zhao Y, Liu Y, Zhang L, Li X. 2017. TaGW2-6A allelic variation contributes to grain size possibly by regulating the expression of cytokinins and starch-related genes in wheat. Planta, 246, 1153–1163.

Kieliszewski M J, Lamport D T A, Tan L, Cannon M C. 2010. Hydroxyproline-rich glycoproteins: Form and function. In: Annual Plant Reviews. John Wiley & Sons, USA. pp. 321–342.

Kumar A, Mantovani E E, Seetan R, Soltani A, Echeverry-Solarte M, Jain S, Simsek S, Doehlert D, Alamri M S, Elias E M, Kianian S F, Mergoum M. 2016. Dissection of genetic factors underlying wheat kernel shape and size in an elite × nonadapted cross using a high density SNP linkage map. The Plant Genome, 9, 1.

Lee W J, Pedersen J F, Shelton D R. 2002. Relationship of sorghum kernel size to physiochemical, milling, pasting, and cooking properties. Food Research International, 35, 643–649.

Li F, Wen W, Liu J, Zhang Y, Cao S, He Z, Rasheed A, Jin H, Zhang C, Yan J, Zhang P, Wan Y, Xia X. 2019. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biology, 19, 168.

Liu D, Zhang L, Hao M, Ning S, Yuan Z, Dai S, Huang L, Wu B, Yan Z, Lan X, Zheng Y. 2018. Wheat breeding in the hometown of Chinese Spring. The Crop Journal, 6, 82–90.

Liu X, McKenna S, Welch L R, Showalter A M. 2020. Bioinformatic identification of plant hydroxyproline-rich glycoproteins. Methods in Molecular Biology (Clifton, N.J.), 2149, 463–481.

Liu X, Xu Z, Feng B, Zhou Q, Ji G, Guo S, Liao S, Lin D, Fan X, Wang T. 2022. Quantitative trait loci identification and breeding value estimation of grain weight-related traits based on a new wheat 50K single nucleotide polymorphism array-derived genetic map. Frontiers in Plant Science, 13, 96743.

Lyu J, Wang D, Sun N, Yang F, Li X, Mu J, Zhou R, Zheng G, Yang X, Zhang C, Han C, Xia G M, Li G, Fan M, Xiao J, Bai M Y. 2024. The TaSnRK1-TabHLH489 module integrates brassinosteroid and sugar signalling to regulate the grain length in bread wheat. Plant Biotechnology Journal, 22, 1989–2006.

Mares D, Moss H, Ellison F. 1986. Effects of grain shape and size on milling yields in wheat. II. Experimental studies. Australian Journal of Agricultural Research, 37, 4.

Meng L, Li H, Zhang L, Wang J. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 3, 269-283.

Mohler V, Albrecht T, Castell A, Diethelm M, Schweizer G, Hartl L. 2016. Considering causal genes in the genetic dissection of kernel traits in common wheat. Journal of Applied Genetics, 57, 467–476.

Paolo D, Orozco-Arroyo G, Rotasperti L, Masiero S, Colombo L, de Folter S, Ambrose B A, Caporali E, Ezquer I, Mizzotti C. 2021. Genetic interaction of SEEDSTICK, GORDITA and AUXIN RESPONSE FACTOR 2 during seed development. Genes, 12, 1189.

Pomeranz Y, Afework S. 1984. The effects of kernel size in plump and shrunken kernels, and of sprouting, on kernel hardness in wheat. Journal of Cereal Science, 2, 119–126.

Ringli C. 2010. The hydroxyproline-rich glycoprotein domain of the Arabidopsis LRX1 requires Tyr for function but not for insolubilization in the cell wall. The Plant Journal, 63, 662–669.

Smith S E, Kuehl R O, Ray I M, Hui R, Soleri D. 1998. Evaluation of simple methods for estimating broad-sense heritability in stands of randomly planted genotypes. Crop Science, 38, 1125–1129.

Song J, Xu D, Dong Y, Li F, Bian Y, Li L, Luo X, Fei S, Li L, Zhao C, Zhang Y, Xia X, Ni Z, He Z, Cao S. 2022. Fine mapping and characterization of a major QTL for grain weight on wheat chromosome arm 5DL. Theoretical and Applied Genetics, 135, 3237–3246.

Su Q, Zhang X, Zhang W, Zhang N, Song L, Liu L, Xue X, Liu G, Liu J, Meng D, Zhi L, Ji J, Zhao X, Yang C, Tong Y, Liu Z, Li J. 2018. QTL detection for kernel size and weight in bread wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Frontiers in Plant Science, 9, 1484.

Su Z, Hao C, Wang L, Dong Y, Zhang X. 2011. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 122, 211–223.

Sukumaran S, Lopes M, Dreisigacker S, Reynolds M. 2018. Genetic analysis of multi-environmental spring wheat trials identifies genomic regions for locus-specific trade-offs for grain weight and grain number. Theoretical and Applied Genetics, 131, 985–998.

Varshney R K, Prasad M, Roy J K, Kumar N, Harjit-Singh, Dhaliwal H S, Balyan H S, Gupta P K. 2000. Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTL for grain weight in bread wheat. Theoretical and Applied Genetics, 100, 1290–1294.

Wang X, Dong L, Hu J, Pang Y, Hu L, Xiao G, Ma X, Kong X, Jia J, Wang H, Kong L. 2019. Dissecting genetic loci affecting grain morphological traits to improve grain weight via nested association mapping. Theoretical and Applied Genetics, 132, 3115–3128.

Williams K, Munkvold J, Sorrells M. 2013. Comparison of digital image analysis using elliptic Fourier descriptors and major dimensions to phenotype seed shape in hexaploid wheat (Triticum aestivum L.). Euphytica, 190, 99–116.

Xu Y F, Li S S, Li L H, Ma F F, Fu X Y, Shi Z L, Xu H X, Ma P T, An D G. 2017. QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Molecular Breeding, 37, 34.

Yang X, Lu J, Shi W J, Chen Y H, Yu J W, Chen S H, Zhao D S, Huang L C, Fan X L, Zhang C Q, Zhang L, Liu Q Q, Li Q F. 2024. RGA1 regulates grain size, rice quality and seed germination in the small and round grain mutant srg5. BMC Plant Biology, 24, 1–13.

Yang Z, Bai Z, Li X, Wang P, Wu Q, Yang L, Li L, Li X. 2012. SNP identification and allelic-specific PCR markers development for TaGW2, a gene linked to wheat kernel weight. Theoretical and Applied Genetics, 125, 1057–1068.

Zhang D, Wang B, Zhao J, Zhao X, Zhang L, Liu D, Dong L, Wang D, Mao L, Li A. 2015. Divergence in homoeolog expression of the grain length-associated gene GASR7 during wheat allohexaploidization. The Crop Journal, 3, 1–9. 

Zhang G, Wang Y, Guo Y, Zhao Y, Kong F, Li S. 2015. Characterization and mapping of QTLs on chromosome 2D for grain size and yield traits using a mutant line induced by EMS in wheat. The Crop Journal, 3, 135–144.

Zhang Y, Liu J, Xia X, He Z. 2014. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Molecular Breeding, 34, 1097–1107.

Zhang Y, Wang J, Zhou X, Yu L, Liu X. 2008. Influence of impurity types and content on the bulk density of wheat. Journal of Henan University of Technology (Natural Science Edition), 1, 711.

Zhao D, Yang L, Liu D, Zeng J, Cao S, Xia X, Yan J, Song X, He Z, Zhang Y. 2021. Fine mapping and validation of a major QTL for grain weight on chromosome 5B in bread wheat. Theoretical and Applied Genetics, 134, 3731–3741.

Zhao D, Zhang C, Li Q, Liu Q. 2022. Genetic control of grain appearance quality in rice. Biotechnology Advances, 60, 108014.

Zhu J. 1995. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 141, 1633–1639.

No related articles found!
No Suggested Reading articles found!