Discovery and structure-activity relationship studies of novel tetrahydro-β-carboline derivatives as apoptosis initiators for treating bacterial infections
Cassava MeRS40 is required for the regulation of plant salt tolerance
Soil salinity affects the expression of serine/arginine-rich (SR) genes and isoforms by alternative splicing, which in turn regulates the adaptation of plants to stress. We previously identified the cassava spliceosomal component 35 like (SCL) and SR subfamilies, belonging to the SR protein family, which are extensively involved in responses to abiotic stresses. However, the post-transcriptional regulatory mechanism of cassava arginine/serine-rich (RS) subfamily in response to salt stress remains to be explored. In the current study, we identified 37 genes of the RS subfamily from 11 plant species and systematically investigated the transcript levels of the RS40 and RS31 genes under diverse abiotic stress conditions. Subsequently, an analysis of the conserved protein domains revealed that plant RS subfamily genes were likely to preserve their conserved molecular functions and played critical functional roles in responses to abiotic stresses. Importantly, we found that overexpression of MeRS40 in Arabidopsis enhanced salt tolerance by maintaining reactive oxygen species homeostasis and up-regulating the salt-responsive genes. However, overexpression of MeRS40 gene in cassava reduced salt tolerance due to the depression of its endogenous gene expression by negative autoregulation of its own pre-mRNA. Moreover, the MeRS40 protein interacted with MeU1-70Ks (MeU1-70Ka and MeU1-70Kb) in vivo and in vitro, respectively. Therefore, our findings highlight the critical role of cassava SR proteins in responses to salt stress in plants.
Potato is one of the staple food crops in North China. However, potato production in this region is threatened by the low amount and high spatial-temporal variation of precipitation. Increasing yield and water use efficiency (WUE) of potato by various water management practices under water resource limitation is of great importance for ensuring food security in China. However, the contributions of different water management practices to yield and WUE of potato have been rarely investigated across North China’s potato planting region. Based on meta-analysis of field experiments from the literature and model simulation, this study quantified the potential yields of potatoes without water and fertilizer limitation, and yield under irrigated and rainfed conditions, and the corresponding WUEs across four potato planting regions including the Da Hinggan Mountains (DH), the Foothills of Yanshan hilly (YH), the North foot of the Yinshan Mountains (YM), and the Loess Plateau (LP) in North China. Simulated average potential potato tuber dry weight yield by the APSIM-Potato Model was 12.4 t ha–1 for the YH region, 11.4 t ha–1 for the YM region, 11.2 t ha–1 for the DH region, and 10.7 t ha–1 for the LP region, respectively. Observed rainfed potato tuber dry weight yield accounted for 61, 30, 28 and 24% of the potential yield in the DH, YH, YM, and LP regions. The maximum WUE of 2.2 kg m–3 in the YH region, 2.1 kg m–3 in the DH region, 1.9 kg m–3 in the YM region and 1.9 kg m–3 in the LP region was achieved under the potential yield level. Ridge-furrow planting could boost yield by 8–49% and WUE by 2–36% while ridge-furrow planting with film mulching could boost yield by 35–89% and WUE by 7–57% across North China. Our study demonstrates that there is a large potential to increase yield and WUE simultaneously by combining ridge-furrow planting with film mulching and supplemental irrigation in different potato planting regions with limited water resources.
Chromatin accessibility plays a vital role in gene transcriptional regulation. However, the regulatory mechanism of chromatin accessibility, as well as its role in regulating crucial gene expression and kernel development in maize (Zea mays) are poorly understood. In this study, we isolated a maize kernel mutant designated as defective kernel219 (dek219), which displays opaque endosperm and embryo abortion. Dek219 encodes the DICER-LIKE1 (DCL1) protein, an essential enzyme in miRNA biogenesis. Loss of function of Dek219 results in significant reductions in the expression levels of most miRNAs and histone genes. Further research showed that the Heat shock transcription factor17 (Hsf17)-Zm00001d016571 module may be one of the factors affecting the expression of histone genes. Assay results for transposase-accessible chromatin sequencing (ATAC-seq) indicated that the chromatin accessibility of dek219 is altered compared with that of wild type (WT), which may regulate the expression of crucial genes in kernel development. By analyzing differentially expressed genes (DEGs) and differentially accessible chromatin regions (ACRs) between WT and dek219, we identified 119 candidate genes that are regulated by chromatin accessibility, including some reported to be crucial genes for kernel development. Taken together, these results suggest that Dek219 affects chromatin accessibility and the expression of crucial genes that are required for maize kernel development