导航切换
Journal of Integrative Agriculture
JIA Home
About JIA
Description
Video introduction
Editor-in-chief
Editorial board
Guideline of JIA editorial board
Editorial board
Youth Editorial Board
For authors
Instruction for authors
Title page
Copyright agreement
Templates
Endnote
Subscription
Contact
Journals
Publication Years
Keywords
Search within results
(((HOU Peng[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
Current station and suggestions for mechanical grain harvesting of corn in China
XIE Rui-zhi, MING Bo, WANG Ke-ru, HOU Peng, LI Shao-kun
2022, 21 (
3
): 892-897. DOI:
10.1016/S2095-3119(21)63804-2
Abstract
(
183
)
PDF in ScienceDirect
Reference
|
Related Articles
|
Metrics
Select
Dynamics of maize grain drying in the high latitude region of Northeast China
CHU Zhen-dong, MING Bo LI Lu-lu, XUE Jun, ZHANG Wan-xu, HOU Liang-yu, XIE Rui-zhi, HOU Peng, WANG Ke-ru, LI Shao-kun
2022, 21 (
2
): 365-374. DOI:
10.1016/S2095-3119(20)63434-7
Abstract
(
215
)
PDF in ScienceDirect
A high grain moisture content at harvest has been an important problem in the high latitude region of Northeast China, and it is closely related to the genotypes of varieties, local meteorological factors and planting management. However, delayed harvest at a low temperature could not effectively reduce the grain moisture content. In this study, we continuously observed the grain drying during the late stage of different maturing types of maize varieties in Daqing, Heilongjiang Province, China in 2016 and 2017. A two-segment linear model was used to analyze the different stages of the drying processes: 1) Two-segment linear model fitting can divide the grain drying process of all varieties into two separate linear drying processes with different slopes. 2) During the rapid drying stage, the drying was faster at a higher temperature. The rate of slow drying was influenced by air vapor pressure. 3) The moisture content and meteorological factors when the drying rate turns from one stage into the other were not consistent between varieties and years. After entering the frost period, temperatures below 0°C will significantly reduce the rate of grain drying. 4) Due to the short growth period of early-maturing varieties, the drying time was prolonged, and the grain moisture content was lower than that of the mid-late maturing varieties. Local meteorological conditions do not allow the drying of mid-late maturing varieties to achieve a lower moisture content. When the temperature falls below 0°C, the drying rate of grain decreases markedly. Therefore, one feasible way to solve the problem of high moisture content is to replace the early-maturing varieties and implement the corresponding cultivation techniques.
Reference
|
Related Articles
|
Metrics
Select
Study of corn kernel breakage susceptibility as a function of its moisture content by using a laboratory grinding method
GUO Ya-nan, HOU Liang-yu, LI Lu-lu, GAO Shang, HOU Jun-feng, MING Bo, XIE Rui-zhi, XUE Jun, HOU Peng, WANG Ke-ru, LI Shao-kun
2022, 21 (
1
): 70-77. DOI:
10.1016/S2095-3119(20)63250-6
Abstract
(
136
)
PDF in ScienceDirect
The rate of corn kernel breakage in the grain combine harvesters is a crucial factor affecting the quality of the grain shelled in the field. The objective of the present study was to determine the susceptibility of corn kernels to breakage based on the kernel moisture content in order to determine the moisture content that corresponds to the lowest rate of breakage. In addition, we evaluated the resistance to breakage of various corn cultivars. A total of 17 different corn cultivars were planted at two different sowing dates at the Beibuchang Experiment Station, Beijing and the Xinxiang Experiment Station (Henan Province) of the Chinese Academy of Agricultural Sciences. The corn kernel moisture content was systematically monitored and recorded over time, and the breakage rate was measured by using the grinding method. The results for all grain samples from the two experimental stations revealed that the breakage rate
y
is quadratic in moisture content
x
,
y
=0.0796x2−3.3929x+78.779;
R
2
=0.2646,
n
=512. By fitting to the regression equation, a minimum corn kernel breakage rate of 42.62% was obtained, corresponding to a corn kernel moisture content of 21.31%. Furthermore, in the 90% confidence interval, the corn kernel moisture ranging from 19.7 to 22.3% led to the lowest kernel breakage rate, which was consistent with the corn kernel moisture content allowing the lowest breakage rate of corn kernels shelled in the field with combine grain harvesters. Using the lowest breakage rate as the critical point, the correlation between breakage rate and moisture content was significantly negative for low moisture content but positive for high moisture content. The slope and correlation coefficient of the linear regression equation indicated that high moisture content led to greater sensitivity and correlation between grain breakage and moisture content. At the Beibuchang Experiment Station, the corn cultivars resistant to breakage were Zhengdan 958 (ZD958) and Fengken 139 (FK139), and the corn cultivars non-resistant to breakage were Lianchuang 825 (LC825), Jidan 66 (JD66), Lidan 295 (LD295), and Jingnongke 728 (JNK728). At the Xinxiang Experiment Station, the corn cultivars resistant to breakage were HT1, ZD958 and FK139, and the corn cultivars non-resistant to breakage were ZY8911, DK653 and JNK728. Thus, the breakage classifications of the six corn cultivars were consistent between the two experimental stations. In conclusion, the results suggested that the high stability of the grinding method allowed it to be used to determine the corn kernel breakage rates of different corn cultivars as a function of moisture content, thus facilitating the breeding and screening of breakage-resistant corn.
Reference
|
Related Articles
|
Metrics
Select
Difference in corn kernel moisture content between pre- and post-harvest
LI Lu-lu, MING Bo, XUE Jun, GAO Shang, WANG Ke-ru, XIE Rui-zhi, HOU Peng, LI Shao-kun
2021, 20 (
7
): 1775-1782. DOI:
10.1016/S2095-3119(20)63245-2
Abstract
(
109
)
PDF in ScienceDirect
The harvest method of shelling corn (
Zea mays
L.) kernels in the field decreases labor costs associated with transporting, drying and threshing the crop. However, it was previously found that the kernel moisture content increased after field harvest, which decreased the value of corn kernels. To identify the reasons underlying the increase, we conducted a multi-year and -area trial in the Huang-Huai-Hai Plain, China and performed a staged-harvest test at several phases of kernel dry-down. The test investigated a range of parameters such as the kernel moisture content pre- and post-harvest, the kernel breakage rate, the amount of impurities, and the moisture content of various other plant tissues. An analysis of 411 pairs of pre- and post-harvest samples found that kernel moisture content after harvest was 2.2% higher than that before harvest. In the staged-harvest test, however, a significant increase was only observed when the kernel moisture content before harvest was higher than 23.9%. The increase in post-harvest kernel moisture content was positively associated with the pre-harvest kernel moisture content, breakage rate and impurity rate. Typically, at harvest time in this region, there is a significant fraction of immature crops with a high moisture content, resulting in kernels that are prone to breakage or impurities that ultimately lead to increases in water content after harvest. Therefore, we suggest using hybrids that quickly wither late in the growing stage. Additionally, farmers should delay harvest in order to minimize the pre-harvest kernel moisture content and thus reduce breakages and impurities, thereby improving the quality of kernels after harvest and the efficiency of corn kernel farming in China.
Reference
|
Related Articles
|
Metrics
Select
The effect of solar radiation change on the maize yield gap from the perspectives of dry matter accumulation and distribution
YANG Yun-shan, GUO Xiao-xia, LIU Hui-fang, LIU Guang-zhou, LIU Wan-mao, MING Bo, XIE Rui-zhi, WANG Ke-ru, HOU Peng, LI Shao-kun
2021, 20 (
2
): 482-493. DOI:
10.1016/S2095-3119(20)63581-X
Abstract
(
156
)
PDF in ScienceDirect
The uneven distribution of solar radiation is one of the main reasons for the variations in the yield gap between different regions in China and other countries of the world. In this study, different solar radiation levels were created by shading and the yield gaps induced by those levels were analyzed by measuring the aboveground and underground growth of maize. The experiments were conducted in Qitai, Xinjiang, China, in 2018 and 2019. The maize cultivars Xianyu 335 (XY335) and Zhengdan 958 (ZD958) were used with planting density of 12×10
4
plants ha
–1
under either high solar radiation (HSR) or low solar radiation (LSR, 70% of HSR). The results showed that variation in the solar radiation resulted in a yield gap and different cultivars behaved differently. The yield gaps of XY335 and ZD958 were 8.9 and 5.8 t ha
–1
induced by the decreased total intercepted photosynthetically active radiation (TIPAR) of 323.1 and 403.9 MJ m
–2
from emergence to the maturity stage, respectively. The average yield of XY335 was higher than that of ZD958 under HSR, while the average yield of ZD958 was higher than that of XY335 under LSR. The light intercepted by the canopy and the photosynthetic rates both decreased with decreasing solar radiation. The aboveground dry matter decreased by 11.1% at silking and 21% at maturity, and the dry matter of vegetative organs and reproductive organs decreased by 9.8 and 20.9% at silking and by 12.1 and 25.5% at physiological maturity, respectively. Compared to the HSR, the root weights of XY335 and ZD958 decreased by 54.6 and 45.5%, respectively, in the 0–60 cm soil layer under LSR at silking stage. The aboveground and underground growth responses to different solar radiation levels explained the difference in yield gap. Selecting suitable cultivars can increase maize yield and reduce the yield gaps induced by variation of the solar radiation levels in different regions or under climate change.
Reference
|
Related Articles
|
Metrics
Select
Reducing maize yield gap by matching plant density and solar radiation
LIU Guang-zhou, LIU Wan-mao, HOU Peng, MING Bo, YANG Yun-shan, GUO Xiao-xia, XIE Rui-zhi, WANG Ke-ru, LI Shao-kun
2021, 20 (
2
): 363-370. DOI:
10.1016/S2095-3119(20)63363-9
Abstract
(
94
)
PDF in ScienceDirect
Yield gap exists because the current attained actual grain yield cannot yet achieve the estimated yield potential. Chinese high yield maize belt has a wide span from east to west which results in different solar radiations between different regions and thus different grain yields. We used multi-site experimental data, surveyed farmer yield data, the highest recorded yield data in the literatures, and simulations with Hybrid-Maize Model to assess the yield gap and tried to reduce the yield gap by matching the solar radiation and plant density. The maize belt was divided into five regions from east to west according to distribution of accumulated solar radiation. The results showed that there were more than 5.8 Mg ha
–1
yield gaps between surveyed farmer yield and the yield potential in different regions of China from east to west, which just achieved less than 65% of the yield potential. By analyzing the multi-site density experimental data, we found that the accumulated solar radiation was significantly correlated to optimum plant density which is the density with the highest yield in the multi-site density experiment (
y
=0.09895x–32.49,
P
<0.01), according to which the optimum plant densities in different regions from east to west were calculated. It showed that the optimum plant density could be increased by 60.0, 55.2, 47.3, 84.8, and 59.6% compared to the actual density, the grain yield could be increased by 20.2, 18.3, 10.9, 18.1, and 15.3% through increasing plant density, which could reduce the yield gaps of 33.7, 23.0, 13.4, 17.3, and 10.4% in R (region)-1, R-2, R-3, R-4, and R-5, respectively. This study indicates that matching maize plant density and solar radiation is an effective approach to reduce yield gaps in different regions of China.
Reference
|
Related Articles
|
Metrics
Select
Maize grain yield and water use efficiency in relation to climatic factors and plant population in northern China
LIU Yue-e, HOU Peng, HUANG Gui-rong, ZHONG Xiu-li, LI Hao-ru, ZHAO Jiu-ran, LI Shao-kun, MEI Xu-rong
2021, 20 (
12
): 3156-3169. DOI:
10.1016/S2095-3119(20)63428-1
Abstract
(
222
)
PDF in ScienceDirect
Water scarcity has become a limiting factor for increasing crop production. Finding ways to improve water use efficiency (WUE) has become an urgent task for Chinese agriculture. To understand the response of different maize populations to changes in precipitation and the effects of changes in maize populations on WUE, this study conducted maize population experiments using maize hybrids with different plant types (compact and semi compact) and different planting densities at 25 locations across China. It was found that, as precipitation increased across different locations, maize grain yield first increased and then decreased, while WUE decreased significantly. Analyzing the relationship between WUE and the main climatic factors, this study found that WUE was significantly and negatively correlated with precipitation (
R
(daily mean precipitation) and R (accumulated precipitation)) and was positively correlated with temperature (
T
M
(daily mean maximum temperature),
T
M–m
(
T
m
, daily mean minimum temperature) and GDD (growing degree days)) and solar radiation (
Ra
(daily mean solar radiation) and
Ra
(accumulated solar radiation)) over different growth periods. Significant differences in maize grain yield, WUE and precipitation were found at different planting densities. The population densities were ranked as follows according to maize grain yield and WUE based on the multi-site experiment data: 60 000 plants ha
–1
(P
2
)>90 000 plants ha
–1
(P
3
)>30 000 plants ha
–1
(P
1
). Further analysis showed that, as maize population increased, water consumption increased significantly while soil evaporation decreased significantly. Significant differences were found between the WUE of ZD958 (compact type) and that of LD981 (semi-compact type), as well as among the WUE values at different planting densities. In addition, choosing the optimum hybrid and planting density increased WUE by 21.70 and 14.92%, respectively, which showed that the hybrid played a more significant role than the planting density in improving WUE. Therefore, choosing drought-resistant hybrids could be more effective than increasing the planting density to increase maize grain yield and WUE in northern China. Comprehensive consideration of climatic impacts, drought-resistant hybrids (e.g., ZD958) and planting density (e.g., 60 000 plants ha
–1
) is an effective way to increase maize grain yield and WUE across different regions of China.
Reference
|
Related Articles
|
Metrics
Select
Does nitrogen application rate affect the moisture content of corn grains?
ZHANG Yuan-meng, XUE Jun, ZHAI Juan, ZHANG Guo-qiang, ZHANG Wan-xu, WANG Ke-ru, MING Bo, HOU Peng, XIE Rui-zhi, LIU Chao-wei, LI Shao-kun
2021, 20 (
10
): 2627-2638. DOI:
10.1016/S2095-3119(20)63401-3
Abstract
(
89
)
PDF in ScienceDirect
Nitrogen fertilizer application is an important measure to obtain high and stable corn yield, and the moisture content of corn grains is an important factor affecting the quality of mechanical grain harvesting. In this study, four different nitrogen fertilizer treatments from 0 to 450 kg ha
–1
pure nitrogen were set for a planting density of 12.0×104 plants ha
–1
in 2017 and 2018, and 18 different nitrogen fertilizer treatments from 0 to 765 kg ha
–1
pure nitrogen were set for planting densities of 7.5×10
4
and 12.0×10
4
plants ha
–1
in 2019, to investigate the effect of nitrogen application rate on the moisture content of corn grains. Under each treatment, the growth of corn, leaf area index (LAI) of green leaves, grain moisture content, and grain dehydration rate were measured. The results showed that, as nitrogen application increased from 0 to 765 kg ha
–1
, the silking stage was delayed by about 1 day, the maturity stage was delayed by about 1–2 days, and the number of physiologically mature green leaves and LAI increased. At and after physiological maturity, the extreme difference in grain moisture content between different nitrogen application rates was 1.9–4.0%. As the amount of nitrogen application increased, the corn grain dehydration rate after physiological maturity decreased, but it did not reach statistical significance between nitrogen application rate and grain dehydration rate. No significant correlation was observed between LAI at physiological maturity and grain dehydration rate after physiological maturity. In short, nitrogen application affected the grain moisture content of corn at and after physiological maturity, however, the difference in grain moisture content among different nitrogen application rates was small. These results suggest that the effect of nitrogen application on the moisture content of corn grains should not be considered in agricultural production.
Reference
|
Related Articles
|
Metrics
Select
Kernel crack characteristics for
X
-ray computed microtomography (μCT) and their relationship with the breakage rate of maize varieties
DONG Peng-fei, XIE Rui-zhi, WANG Ke-ru, MING bo, HOU Peng, HOU Jun-feng, XUE Jun, LI Chao-hai, LI shao-kun
2020, 19 (
11
): 2680-2689. DOI:
10.1016/S2095-3119(20)63230-0
Abstract
(
126
)
PDF in ScienceDirect
The most significant problem of maize grain mechanical harvesting quality in China at present is the high grain breakage rate (BR). BR is often the key characteristic that is measured to select hybrids desirable for mechanical grain harvesting. However, conventional BR evaluation and measurement methods have challenges and limitations. Microstructural crack parameters evaluation of maize kernel is of great importance to BR. In this connection,
X
-ray computed microtomography (μ-CT) has proven to be a quite useful method for the assessment of microstructure, as it provides important microstructural parameters, such as object volume, surface, surface/volume ratio, number of closed pores, and others.
X
-ray computed microtomography is a non-destructive technique that enables the reuse of samples already measured and also yields bidimensional (2D) cross-sectional images of the sample as well as volume rendering. In this paper, six different maize hybrid genotypes are used as materials, and the BR of the maize kernels of each variety is tested in the field mechanical grain harvesting, and the BR is used as an index for evaluating the breakage resistance of the variety. The crack characteristic parameters of kernel were detected by
X-
ray micro-computed tomography, and the relationship between the BR and the kernel crack characteristics was analyzed by stepwise regression analysis. Establishing a relationship between crack characteristic parameters and BR of maize is vital for judging breakage resistance. The results of stepwise multiple linear regression (MLR) showed that the crack characteristics of the object surface, number of closed pores, surface of closed pores, and closed porosity percent were significantly correlated to the BR of field mechanical grain harvesting, with the standard partial regression coefficients of –0.998, –0.988, –0.999, and –0.998, respectively. The
R
2
of this model was 0.999. Results validation showed that the Stepwise MLR Model could well predict the BR of maize based on these four variables.
Reference
|
Related Articles
|
Metrics
Select
Key indicators affecting maize stalk lodging resistance of different growth periods under different sowing dates
WANG Qun, XUE Jun, CHEN Jiang-lu, FAN Ying-hu, ZHANG Guo-qiang, XIE Rui-zhi, MING Bo, HOU Peng, WANG Ke-ru, LI Shao-kun
2020, 19 (
10
): 2419-2428. DOI:
10.1016/S2095-3119(20)63259-2
Abstract
(
181
)
PDF in ScienceDirect
The accurate evaluation of maize stalk lodging resistance in different growth periods enables timely management of lodging risks and ensures stable and high maize yields. Here, we established five different sowing dates to create different conditions for maize growth. We evaluated the effects of the different growth conditions on lodging resistance by determining stalk morphology, moisture content, mechanical strength and dry matter, and the relationship between stalk breaking force and these indicators during the silking stage (R1), milk stage (R3), physiological maturity stage (R6), and 20 days after R6. Plant height at R1 positively affected stalk breaking force. At R3, the coefficient of ear height and the dry weight per unit length of basal internodes were key indicators of stalk lodging resistance. At R6, the key indicators were the coefficient of the center of gravity height and plant fresh weight. After R6, the key indicator was the coefficient of the center of gravity height. The crushing strength of the fourth internode correlated significantly and positively with the stalk breaking force from R1 to R6, which indicates that crushing strength is a reliable indicator of stalk mechanical strength. These results suggest that high stalk strength and low ear height benefit lodging resistance prior to R6. During and after R6, the coefficient of the center of gravity height and the mechanical strength of basal internodes can be used to evaluate plant lodging resistance and the appropriate time for harvesting in fields with a high lodging risk.
Reference
|
Related Articles
|
Metrics
Select
Post-silking nitrogen accumulation and remobilization are associated with green leaf persistence and plant density in maize
ZHANG Li-li, ZHOU Xiang-li, FAN Ye, FU Jun, HOU Peng, YANG Hai-long, QI Hua
2019, 18 (
8
): 1882-1892. DOI:
10.1016/S2095-3119(18)62087-8
Abstract
(
212
)
PDF in ScienceDirect
Abstract
Stay green (SG) maize was found to have higher grain yield and post-silking nitrogen (N) uptake (PostN) compared with a non-stay green (NSG) hybrid. To understand the effects of plant density on grain yield (GY) and N efficiency in modern maize hybrids, we compared two modern hybrids (SG hybrid DY508 and NSG hybrid NH101) with similar maturity ratings at three plant densities (45 000, 60 000, and 75 000 pl ha
–1
) in 2014 and 2015. GY, leaf senescence, dry matter (DM) accumulation, N accumulation, PostN, and post-silking N remobilization (RemN) were analyzed. DY508 and NH101 had similar GY, but DY508 had higher thousand kernel weight (TKW) and lower kernel number (KN) than NH101. Plant density significantly increased GY in the two hybrids. On average, over the two years, plant density improved GY in DY508 and NH101 by 18.5 and 11.1%, respectively, but there were no differences in total dry matter (TDM) and post-silking DM (PostDM) between the two hybrids. Plant density improved leaf N, stem N, and grain N at the silking and maturity stages in 2014 and 2015. DY508 was lower in harvest index (HI), nitrogen harvest index (NHI), and grain N concentration (GNC) than NH101. Grain N in DY508 was 2.61 kg ha
–1
less than in NH101, and this was caused by lower GNC and leaf RemN. On the average, DY508 was 1.62 kg ha
–1
less in leaf remobilized N (leaf RemN) than NH101, but was similar in stem remobilized N (stem RemN; 2.47 kg ha
–1
vs. 3.41 kg ha
–1
). Maize hybrid DY508 shows delayed leaf senescence in the upper and bottom canopy layers in the later stages of growth. The present study provides evidence that the NH101, which has rapid leaf senescence at the late grain-filling stage, has gained equivalent GY and higher leaf RemN, and was more efficient in N utilization.
Reference
|
Related Articles
|
Metrics
Select
Research progress on reduced lodging of high-yield and -density maize
XUE Jun, XIE Rui-zhi, ZHANG Wang-feng, WANG Ke-ru, HOU Peng, MING Bo, GOU Ling, LI Shao-kun
2017, 16 (
12
): 2717-2725. DOI:
10.1016/S2095-3119(17)61785-4
Abstract
(
1086
)
PDF
(250KB)(
176
)
Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor restricting future increases in maize yield through high-density planting. This paper reviewed previous research on the relationships between maize lodging rate and plant morphology, mechanical strength of stalks, anatomical and biochemical characteristics of stalks, root characteristics, damage from pests and diseases, environmental factors, and genomic characteristics. The effects of planting density on these factors and explored possible ways to improve lodging resistance were also analyzed in this paper. The results provide a basis for future research on increasing maize lodging resistance under high-density planting conditions and can be used to develop maize cultivation practices and lodging-resistant maize cultivars.
Reference
|
Related Articles
|
Metrics
Select
Comparison of Two MicroRNA Quantification Methods for Assaying MicroRNA Expression Profiles in Wheat (Triticum aestivum L.)
HAN Ran, YAN Yan, ZHOU Peng , ZHAO Hui-xian
2014, 13 (
4
): 733-740. DOI:
10.1016/S2095-3119(13)60362-7
Abstract
(
1910
)
PDF in ScienceDirect
Two microRNA (miRNA) quantification methods, namely, poly(A) reverse transcription (RT)-quantitative real-time polymerase chain reaction (qPCR) and stem-loop RT-qPCR, have been developed for quantifying miRNA expression. In the present study, five miRNAs, including miR166, miR167, miR168, miR159, and miR396, with different sequence frequencies, were selected as targets to compare their expression profiles in five wheat tissues by applying the two methods and deep sequencing. The study aimed to determine a simple, reliable and high-throughput method for detecting miRNA expressions in wheat tissues. Results showed that the miRNA expression profiles determined by poly(A) RT-qPCR were more consistent with those obtained by deep sequencing. Further analysis indicated that the correlation coefficients of the data obtained by poly(A) RT-qPCR and deep sequencing (0.739, P 0.01) were higher than those obtained by stem-loop RT-qPCR and deep sequencing (0.535, P 0.01). The protocol used for poly(A) RT-qPCR is simpler than that for stem-loop RT-qPCR. Thus, poly(A) RT-qPCR was a more suitable high-throughput assay for detecting miRNA expression profiles. To the best of our knowledge, this study was the first to compare these two miRNA quantification methods. We also provided useful information for quantifying miRNA in wheat or other plant species.
Reference
|
Related Articles
|
Metrics
Select
Effect of Nitric Oxide on Alleviating Cadmium Toxicity in Rice (Oryza sativa L.)
ZHAO Xiu-feng, CHEN Lin, Muhammad I A Rehmani, WANG Qiang-sheng, WANG Shao-hua, HOU Pengfu, LI Gang-hua , DING Yan-feng
2013, 12 (
9
): 1540-1550. DOI:
10.1016/S2095-3119(13)60417-7
Abstract
(
1841
)
PDF in ScienceDirect
Nitric oxide (NO) is a gaseous signaling molecule in plants that plays a key role in mediating a wide range of physiological processes and responses to biotic and abiotic stresses. The present study was conducted to investigate the effects of the exogenous application of sodium nitroprusside (SNP), an NO donor, on cadmium (Cd)-induced oxidative stress and Cd uptake in rice plants. Rice plants were exposed to Cd stress (0.2 mmol L-1 CdCl2) and different concentrations of SNP (0.05, 0.1, 0.2, and 0.4 mmol L-1). A SNP concentration of 0.1 mmol L-1 (SNP10) significantly reduced the Cd-induced decrease in shoot and root dry weights and leaf chlorophyll concentrations. The addition of NO also reduced the malondialdehyde (MDA), hydrogen peroxide (H2O2) and ascorbic acid (ASA) concentrations. However, the reduction in glutathione (GSH) concentration was inhibited by NO treatment. Moreover, NO prevented the Cd-induced increase in antioxidative enzyme activity. The amount of Cd accumulation in rice plants was also influenced by the addition of NO. The NO supplied by the SNP enhanced the Cd tolerance of the rice by increasing the Cd uptake by the roots and decreasing the Cd accumulation by the shoots. However, the application of potassium ferrocyanide (Cd+Fe) or sodium nitrate and nitrite (Cd+N) (without NO release), did not exhibit the effects of the SNP. Furthermore, the effects of the SNP were reversed by the addition of hemoglobin (an NO scavenger). Our results suggested that exogenous NO was involved in the resistance of rice to Cdtoxicity.
Reference
|
Related Articles
|
Metrics
Select
Spatial Distribution of Soil Organic Matter and Nutrients in the Pear Orchard Under Clean and Sod Cultivation Models
XU Ling-fei, ZHOU Peng, HAN Qing-fang, LI Zhi-hui, YANG Bao-ping , NIE Jun-feng
2013, 12 (
2
): 344-351. DOI:
10.1016/S2095-3119(13)60234-8
Abstract
(
1494
)
PDF in ScienceDirect
The soil organic matter and nutrients are fundamental for the sustainability of pear production, but little is known about the spatial distribution of soil organic matter and nutrients in a pear orchard. With the soil of the pear (cv. Dangshansu on P.betulifolia Bunge. rootstock) orchard under clean and sod cultivation models as test materials, the experiment was conducted to evaluate spatial variability of soil organic matter (SOM), total nitrogen (STN), total phosphorus (STP), total potassium (STK), available nitrogen (SAN), and available potassium (SAK) in and between rows at different soil depths (0-60 cm). The SOM, STN, STP, STK, SAN and SAK of the different soil layers under the two tillage models were different in the vertical direction. The SOM, STN, STP and SAN in the 0-20 cm soil layer were higher than those in the 20-40 and 40- 60 cm soil layers. The STK of 40-60 cm soil layer was higher than that in the 0-20 and 20-40 cm soil layers. The STK increased with the depth of soil in the vertical direction in the clean cultivated pear orchard. Variability of the SOM, STN, STP, STK, SAN and SAK of sample sites in between rows of the same soil layer was found in the pear orchard soil in the horizontal direction under clean and sod cultivation management systems, except that STK of all sites did not show the difference in identical soil layers in the pear orchard under clean cultivation. The sod cultivation model improved the SOM, STN, and STK in the 0-20 cm soil layer in the pear orchard, and the three components increased by 12.8, 12.7 and 7.3% compared to clean cultivation, respectively. The results can be applicable to plan collection of orchard soil samples, assess orchard soil quality, and improve orchard soil management practices.
Reference
|
Related Articles
|
Metrics