Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails

Biology of Hippo signaling pathway: Skeletal muscle development and beyond

Shuqi Qin, Chaocheng Li, Haiyan Lu, Yulong Feng, Tao Guo, Yusong Han, Yongsheng Zhang, Zhonglin Tang
2024, 23 (6): 1825-1838.   DOI: 10.1016/j.jia.2023.09.031
Abstract123)      PDF in ScienceDirect      

Global demand for farm animals and their meat products i.e., pork, chicken and other livestock meat, is steadily incresing. With the ongoing life science research and the rapid development of biotechnology, it is a great opportunity to develop advanced molecular breeding markers to efficiently improve animal meat production traits.  Hippo is an important study subject because of its crucial role in the regulation of organ size.  In recent years, with the increase of research on Hippo signaling pathway, the integrative application of multi-omics technologies such as genomics, transcriptomics, proteomics, and metabolomics can help promote the in-depth involvement of Hippo signaling pathway in skeletal muscle development research.  The Hippo signaling pathway plays a key role in many biological events, including cell division, cell migration, cell proliferation, cell differentiation, cell apoptosis, as well as cell adhesion, cell polarity, homeostasis, maintenance of the face of mechanical overload, etc.  Its influence on the development of skeletal muscle has important research value for enhancing the efficiency of animal husbandry production.  In this study, we traced the origin of the Hippo pathway, comprehensively sorted out all the functional factors found in the pathway, deeply analyzed the molecular mechanism of its function, and classified it from a novel perspective based on its main functional domain and mode of action.  Our aim is to systematically explore its regulatory role throughout skeletal muscle development.  We specifically focus on the Hippo signaling pathway in embryonic stem cell development, muscle satellite cell fate determination, myogenesis, skeletal muscle meat production and organ size regulation, muscle hypertrophy and atrophy, muscle fiber formation and its transformation between different types, and cardiomyocytes.  The roles in proliferation and regeneration are methodically summarized and analyzed comprehensively.  The summary and prospect of the Hippo signaling pathway within this article will provide ideas for further improving meat production and muscle deposition and developing new molecular breeding technologies for livestock and poultry, which will be helpful for the development of animal molecular breeding.

Reference | Related Articles | Metrics

Emergence of highly pathogenic avian influenza A (H5N8) clade 2.3.4.4b viruses in grebes in Inner Mongolia and Ningxia, China, in 2021

Qiuzi Xu, Xinru Lü, Yi Li, Hua Luo, Zhen Zhang, Xiang Li, Rongxiu Qin, Qing An, Fengyi Qu, Zhenliang Zhao, Chengbo Zhang, Weidong Wang, Yuecheng Li, Yajun Wang, Xiangwei Zeng, Zhijun Hou, Jingqiang Ren, Yulong Wang, Yanbing Li, Hongliang Chai
2024, 23 (1): 348-353.   DOI: 10.1016/j.jia.2023.09.026
Abstract143)      PDF in ScienceDirect      
Reference | Related Articles | Metrics

Can whole steps of grain production be outsourced?  Empirical analysis based on the three provinces of Jiangsu, Jilin, and Sichuan in China

Jiacheng Liu, Shengzhi Mao, Qiufen Zheng, Zhigang Xu
2024, 23 (1): 336-347.   DOI: 10.1016/j.jia.2023.09.034
Abstract133)      PDF in ScienceDirect      

Certain outsourcing services for agricultural management in China, such as pest control in grain production, have experienced prolonged sluggishness, contrasting with the relatively high level of outsourcing services observed in harvesting, land preparation, and sowing.  This study examines the feasibility of implementing whole-step outsourcing in grain production by conducting a case study of rice and maize production in Jiangsu, Jilin, and Sichuan provinces in China.  The provision of outsourcing services hinges on two essential conditions: technological advancements fostering specialized production and economies of scale, coupled with a market size sufficient to realize the aforementioned potential economies of scale.  The results showed that outsourcing pest control or harvesting services had varying economies of scale.  The outsourcing services in pest control were less common than in harvesting services, and their marginal growth space of the economies of scale with technological change was also smaller.  Determined by the operational characteristics of pest control itself, the market scale of its professional services is small.  Therefore, achieving the whole-step outsourcing of grain production necessitates not only technological innovation but also effective policy interventions to overcome the constraints of market scale.  Such interventions include (1) optimizing crop layouts between planning regions and reducing land fragmentation and (2) supplying timely and effective inter-regional agricultural information for service providers aided by information technology.

Reference | Related Articles | Metrics
Use of two-stage dough mixing process in improving water distribution of dough and qualities of bread made from wheat–potato flour
YIN Jian, CHENG Li, HONG Yan, LI Zhao-feng, LI Cai-ming, BAN Xiao-feng, GU Zheng-biao
2021, 20 (1): 300-310.   DOI: 10.1016/S2095-3119(20)63433-5
Abstract153)      PDF in ScienceDirect      
The two-stage dough mixing process was innovated to improve the qualities of bread made from potato flour (PF) and wheat flour at a ratio of 1:1 (w/w).  The final dough was first prepared from wheat flour before being added with PF.  The effects of the method on enhancing the dough qualities were verified, and the distribution of water in gluten-gelatinized starch matrix of the doughs was investigated.  We observed that the bread qualities were improved, as reflected by the increase of specific volume from 2.26 to 2.96 mL g–1 and the decrease of crumb hardness from 417.93 to 255.57 g.  The results from rheofermentometric measurements showed that the dough mixed using the developed mixing method had higher maximum dough height value, time of dough porosity appearance, and gas retention coefficient, as well as enhanced gluten matrix formation compared to that mixed by the traditional mixing method.  The results from low-field nuclear magnetic resonance confirmed that the competitive water absorption between gluten and gelatinized starch could restrict the formation of gluten network in the dough mixed using the traditional mixing process.  Using the novel mixing method, gluten could be sufficiently hydrated in stage 1, which could then weaken the competitive water absorption caused by gelatinized starch in stage 2; this could also be indicated by the greater mobility of proton in PF and better development of gluten network during mixing.
Reference | Related Articles | Metrics
Herbicidal activity of Aureobasidium pullulans PA-2 on weeds and optimization of its solid-state fermentation conditions
GUO Qing-yun, CHENG Liang, ZHU Hai-xia, LI Wei, WEI You-hai, CHEN Hong-yu, GUO Liang-zhi, WENG Hua, WANG Jian
2020, 19 (1): 173-182.   DOI: 10.1016/S2095-3119(19)62738-3
Abstract127)      PDF in ScienceDirect      
Fungal strain PA-2 was isolated from infected poplar leaves from the Ping’an District, Haidong City of Qinghai Province, China.  Based on the culture characteristics and the internal transcribed spacer (ITS) sequence of its 16S rDNA, the strain was identified as Aureobasidium pullulans.  The culture and metabolites of strain PA-2 showed high herbicidal potential to five tested weeds Galium aparine var. tenerum, Chenopodium album, Malva crispa, Polygonum lapathifolium and Avena fatua.  For the in vitro test, 5 days after the detached leaves were inoculated with PA-2 culture, all leaves infected by the hyphae and became black and rotten.  For the in vivo test, a metabolite filtrate of PA-2 culture was sprayed over the living weed plants, and five days after inoculation, the weed plants became withered and necrotic.  Seven days after inoculation, the fresh weight reductions of G. aparine var. tenerum, C. album, M. crispa, P.?lapathifolium and A.?fatua were 87.25, 78.46, 82.25, 62.11, and 80.27%, respectively.  Galium aparine var. tenerum and M. crispa exhibited significant reductions in fresh weight.  The bio-safety test on the five crops showed no significant plant height reductions, which was also observed for wheat (Triticum aestivum), faba bean (Vicia faba), and barley (Hordeum vulgare).  By contrast, oilseed rape (Brassica napus) and pea (Pisum sativum) exhibited light spots but no significant reductions in plant height.  These results indicated that A.?pullulans could be a potential microbial herbicide for the control of the target weeds in crops.  Optimization of the carbon and nitrogen sources for cultural media and substances for solid-state fermentation indicated that PA-2 had better colony growth and spore production with the optimal carbon source of glucose (C4), nitrogen source of soybean flour (N2), and the optimal substance was wheat bran.  The results in this study provide useful information for the development of A.?pulluans PA-2 as an herbicide for bio-control of the weed.
Reference | Related Articles | Metrics
Long Term Effects of Farming System on Soil Water Content and Dry Soil Layer in Deep Loess Profile of Loess Tableland in China
CHENG Li-ping, LIU Wen-zhao
2014, 13 (6): 1382-1392.   DOI: 10.1016/S2095-3119(13)60292-0
Abstract6021)      PDF in ScienceDirect      
Soil water is strongly affected by land use/cover in the Loess Plateau in China. Water stored in thick loessal soils is one of the most important resources regulating vegetation growth. However, soil water in the deep loess profile, which is critical for maintaining the function of the “soil water pool” is rarely studied because deep profile soil samples are difficult to collect. In this study, four experimental plots were established in 2005 to represent different farming systems on the Changwu Tableland: fallow land, fertilized cropland, unfertilized cropland, and continuous alfalfa. The soil water content in the 15-m-deep loess profiles was monitored continuously from 2007 to 2012 with the neutron probe technique. The results showed that temporal variations in soil water profiles differed among the four farming systems. Under fallow land, the soil water content increased gradually over time, first in the surface layers and later in the deep soil layers. In contrast, the soil water content decreased gradually under continuous alfalfa. The distributions of soil water in deep soil layers under both fertilized and unfertilized cropland were relatively stable over time. Thus farming system significantly affected soil water content. Seven years after the start of the experiment, the soil water contents in the 15-m-deep profiles averaged 23.4% under fallow land, 20.3% under fertilized cropland, 21.6% under unfertilized cropland, and 16.0% under continuous alfalfa. Compared to measurements at the start of the experiment, both fallow land and unfertilized cropland increased soil water storage in the 15-m loess profiles. In contrast, continuous alfalfa reduced soil water storage. Fertilized cropland has no significant effect on soil water storage. These results suggest that deep soil water can be replenished under the fallow and unfertilized farming systems. Dry soil layers (i.e., those which have soil water content less than the stable field water capacity) in the subsoil of the Changwu Tableland region can be classified as either temporary dry soil layers or persistent dry soil layers. Temporary dry soil layers, which typically form under annual crops, often disappear during wet years. Persistent dry soil layers generally develop under perennial vegetation. Even after removing the vegetation, persistent dry soil layers remain for several decades. This study provides information useful for the conservation and utilization of soil water resources in the Loess Tableland.
Reference | Related Articles | Metrics
Effect of Environment and Genetic Recombination on Subspecies and Economic Trait Differentiation in the F2 and F3 Generations from indicajaponica Hybridization
WANG He-tong, JIN Feng, JIANG Yi-jun, LIN Qing-shan, XU Hai, CHENG Ling, XIA Ying-jun, LIU Chun-xiang, CHEN Wen-fu , XU Zheng-jin
2014, 13 (1): 18-30.   DOI: 10.1016/S2095-3119(13)60353-6
Abstract1754)      PDF in ScienceDirect      
indica and japonica are the two most important subspecies of Asian cultivated rice. Identifying mechanisms responsible for population differentiation in these subspecies is important for indica-japonica hybridization breeding. In this study, subspecies and economic trait differentiation patterns were analyzed using morphological and molecular (InDel and Intron Length Polymorphism) data in F2 and F3 populations derived from indica-japonica hybridization. Populations were grown in Liaoning and Guangdong provinces, China, with F3 populations generated from F2 populations using bulk harvesting (BM) and single-seed descent methods (SSD). Segregation distortion was detected in F3-BM populations, but not in F3- SSD or in F2 populations. Superior performance was observed with respect to economic traits in Liaoning compared with that in Guangdong and 1 000-grain weight (KW), seed setting rate (SSR) and grain yield per plant (GYP) were significantly correlated with indica and japonica subspecies types. Analysis of molecular and morphological data demonstrated that the environment is the main factor giving rise to population differentiation in indica-japonica hybridization. In addition, we also found that KW, SSR and GYP are related to subspecies characteristics and kinship, which is possibly a significant factor resulting in economic trait differentiation and determining environmental adaptability. Our study has provided new insights into the process of population differentiation in these subspecies to inform indica-japonica hybridization breeding.
Reference | Related Articles | Metrics
Genetic Analysis of Cold Tolerance at Seedling Stage and Heat Tolerance atAnthesis in Rice (Oryza sativa L.)
CHENG Li-rui, Veronica Uzokwe, WANG Yun, ZHU Linghua
2012, 12 (3): 359-367.   DOI: 10.1016/S1671-2927(00)8553
Abstract1980)      PDF in ScienceDirect      
A set of 240 introgression lines derived from the advanced backcross population of a cross between a japonica cultivar,Xiushui 09, and an indica breeding line, IR2061, was developed to dissect QTLs affecting cold tolerance (CT) at seedlingstage and heat tolerance (HT) at anthesis. Survival rate of seedlings (SRS) and spikelet fertility (SF), the index traits of CTand HT, showed significant differences between the two parents under stresses. A total of four QTLs (qSRS1, qSRS7,qSRS11a and qSRS11b) for CT were identified on chromosomes 1, 7, 11, and the Xiushui 09 alleles increased SRS at all lociexcept qSRS7. Four QTLs for SF were identified on chromosomes 4, 5, 6, and 11. These QTLs could be classified into twomajor types based on their behaviors under normal and stress conditions. The first was QTL expressed only under normalcondition; and the second QTL was apparently stress induced and only expressed under stress. Among them, two QTLs(qSF4 and qSF6) which reduced the trait difference between heat stress and normal conditions must have contributed toHT because of their obvious contribution to trait stability, and the IR2061 allele at the qSF6 and the Xiushui 09 allele at the qSF4improved HT, respectively. No similar QTL was found between CT at seedling stage and HT at anthesis. Therefore, it ispossible to breed a new variety with CT and HT by pyramiding the favorable CT- and HT-improved alleles at above locifrom Xiushui 09 and IR2061, respectively, through marker-assisted selection (MAS).
Reference | Related Articles | Metrics
Dietary sulforaphane modulates hepatic anti-oxidative genes via REV-ERBα and histone modifications in pigs
Yi-Ting Wang , Shicheng Li, Yufei Kan, Yanli Zhu, Kaiqi Li, Hao-Yu Liu, Tadelle Dessie Alemayehu, In Ho Kim, Mohammad D. Obeidat, Rui Zhang, Zhaojian Li, Demin Cai
DOI: 10.1016/j.jia.2025.02.019 Online: 18 February 2025
Abstract8)      PDF in ScienceDirect      

Sulforaphane (SFN), a naturally occurring isothiocyanate found in cruciferous vegetables, is known for its anti-inflammatory and antioxidant effects in the body. However, whether its dietary addition impact porcine liver health, and if so, by which mechanims remains unclear. In this study, the diet of growing pigs was supplemented with 1 g kg-1 SFN and was found to improve growth performance and hepatocellular proliferation. Further analyses revealed that SFN decreased hepatic and serum malondialdehyde levels, while increasing glutathione peroxidase (GSH-PX) activity in the liver. Transcriptomic and proteomic studies demonstrated that SFN down-regulated multiple pathways, including oxidative phosphorylation, inflammatory responses, IL-6-JAK-STAT3 signaling, and TNFα signaling via NFκB. Meanwhile, it upregulated NRF2/GPX4/HO-1 expression and reduced IL-6 and TNFα expression. Mechanistic studies identified potential NR1D1 and NRF2 binding elements in the promoters of the GPX4 and HO-1 genes in the liver. Furthermore, Metabolomic profiling revealed a decline in serum β-hydroxybutyrate levels after the administration of SFN, while further analysis confirmed that SFN enhanced a type of epigenetic modification in the liver, lysine β-hydroxybutyrylation (Kbhb).  These results highlight SFN protective roles against liver inflammation and oxidative damage and propose a novel mechanism involving NRF2 and NR1D1 synergy, with SFN’s promotion of hepatic Kbhb necessitating further exploration.

Reference | Related Articles | Metrics