Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (3): 1009-1019    DOI: 10.1016/j.jia.2025.12.027
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Transcription factor CsHSFB2c suppresses CsTS1 and CsGS1 expression to reduce theanine biosynthesis in tea plants under heat stress

Qihong Zou1, Bokun Zhou2, Yilan Hu2, Ping Li2, Qi Zhao2, Hu Tang1, Yujie Jiao1, Xinzhuan Yao1, Lin Chen2, Litang Lü1, 2#

1 College of Tea Science, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China

2 The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, China

 Highlights 
Heat stress led to the unique accumulation patterns of theanine and catechins in tea plants: Theanine content decreased significantly with the increasing temperature (peaking at 20°C), while catechins levels increased with increasing temperature (peaking at 30°C).  
RNA-seq identified a class B heat shock transcription factor CsHSFB2c, whose expression was negatively correlated with theanine content.
CsHSFB2c directly binds to the promoters of CsTS1 and CsGS1 and inhibits their transcription, thereby reducing theanine biosynthesis.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

高温胁迫会降低茶树体内的茶氨酸含量,但其分子机制尚不明确。本研究通过设置温度梯度处理(20°C25°C30°C35°C),旨在揭示高温胁迫对茶氨酸生物合成与积累的影响。研究发现,高温胁迫引发代谢重编程,其特征为茶氨酸含量降低而儿茶素含量升高。此外,高温胁迫上调了B类热休克转录因子基因CsHSFB2c的表达,同时显著抑制了茶氨酸生物合成关键基因CsTS1CsGS1的转录。功能研究表明,沉默CsHSFB2c可提高茶氨酸含量,而过量表达该基因则显著降低茶氨酸水平。与上述结果一致,沉默CsHSFB2c会上调CsTS1CsGS1的表达,而过表达CsHSFB2c则导致这两个基因的表达下调。酵母单杂交(Y1H)和双荧光素酶报告基因(Dual-LUC)实验表明,CsHSFB2c可直接结合CsTS1CsGS1的启动子区域并抑制其表达。这些结果证明,CsHSFB2c通过直接抑制CsTS1CsGS1的表达,介导了高温诱导的茶氨酸生物合成抑制。本研究为通过分子育种手段提高茶树抗热性及品质提供了理论依据。



Abstract  

Heat stress reduces theanine content in tea plants, but the underlying molecular mechanism remains unclear.  In this study, a temperature gradient treatment (20°C, 25°C, 30°C, and 35°C) was performed to unveil the effect of heat stress on biosynthesis and accumulation of theanine.  We found that heat stress induced metabolic changes, characterized by decreased theanine content and increased catechin levels.  In addition, heat stress up-regulated the expression of the class B heat shock transcription factor gene CsHSFB2c, while significantly suppressing the transcription of key theanine biosynthetic genes CsTS1 and CsGS1.  Functional studies showed that silencing CsHSFB2c increased theanine content, while its overexpression significantly decreased theanine levels.  Consistent with these changes, silencing CsHSFB2c upregulated the expression of CsTS1 and CsGS1, while overexpression of CsHSFB2c downregulated their expression.  Yeast one-hybrid (Y1H) and dual-luciferase reporter gene (Dual-LUC) assays showed that CsHSFB2c directly binds to the promoters of CsTS1 and CsGS1 and inhibits their expression.  These results demonstrate that CsHSFB2c mediates heat-induced suppression of theanine biosynthesis by directly inhibiting the expression of CsTS1 and CsGS1.  This study provides a theoretical basis for improving the heat resistance and quality of tea plants via molecular breeding.

Keywords:  tea plant       high temperature        HSF        glutamine synthetase        theanine synthetase  
Received: 15 December 2024   Accepted: 16 December 2025 Online: 18 December 2025  
Fund: This work was supported by the Major Project of Guizhou Provincial Science and Technology Program, China ([2024]027), the High-Level Innovative Talents Project of Guizhou Province, China (GCC[2023]014), the Guizhou Provincial Tea Industry Technology System, China (GZCYCYJSTX-03), and the Science and Technology Project of China Huaneng Group (HNKJ2022-H135).
About author:  #Correspondence Litang Lü, E-mail: ltlv@gzu.edu.cn

Cite this article: 

Qihong Zou, Bokun Zhou, Yilan Hu, Ping Li, Qi Zhao, Hu Tang, Yujie Jiao, Xinzhuan Yao, Lin Chen, Litang Lü. 2026. Transcription factor CsHSFB2c suppresses CsTS1 and CsGS1 expression to reduce theanine biosynthesis in tea plants under heat stress. Journal of Integrative Agriculture, 25(3): 1009-1019.

Bakery A, Vraggalas S, Shalha B, Chauchan H, Benhamed M, Fragkostefanakis S. 2024. Heat stress transcription factors as the central molecular rheostat to optimize plant survival and recovery from heat stress. New Phytologist244, 51–64.

Bharti K, von Koskull-Döring P, Bharti S, Kumar P, Tintschl-Körbitzer A, Treuter E, Nover L. 2004. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. The Plant Cell16, 1521–1535.

Bian X H, Li W, Niu C F, Wei W, Hu Y, Han J Q, Lu X, Tao J J, Jin M, Qin H, Zhou B, Zhang W K, Ma B, Wang G D, Yu D Y, Lai Y C, Chen S Y, Zhang J S. 2020. A class B heat shock factor selected for during soybean domestication contributes to salt tolerance by promoting flavonoid biosynthesis. New Phytologist225, 268–283.

Chan E W C, Lim Y Y, Chew Y L. 2007. Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia. Food Chemistry102, 1214–1222.

Charng Y Y, Liu H C, Liu N Y, Chi W T, Wang C N, Chang S H, Wang T T. 2007. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in ArabidopsisPlant Physiology143, 251–262.

Chen F, He Y, Yao X Z, Zho B K, Tian S Y, Yin J, Lu L T. 2024. CsMOF1-guided regulation of drought-induced theanine biosynthesis in Camellia sinensisInternational Journal of Biological Macromolecules268, 131725.

Chen H, Song Y J, Li H, Zaman S, Fan K, Ding Z T, Wang Y. 2023. Enhancing the adaptability of tea plants (Camellia sinensis L.) to high-temperature stress with small peptides and biosurfactants. Plants12, 2817.

Chen Z Z E, Yu Z X, Liu T T, Yao X Z, Zhang S Y, Hu Y L, Luo M Y, Wan Y, Lu L T. 2024. CsSPX3–CsPHL7–CsGS1/CsTS1 module mediated Pi-regulated negatively theanine biosynthesis in tea (Camellia sinensis). Horticulture Research11, uhae242.

Cheng S H, Fu X M, Wang X Q, Liao Y Y, Zeng L T, Dong F, Yang Z Y. 2017. Studies on the biochemical formation pathway of the amino acid L-theanine in tea (Camellia sinensis) and other plants. Journal of Agricultural and Food Chemistry65, 7210–7216.

Dai W D, Qi D D, Yang T, Lv H P, Guo L, Zhang Y, Zhu Y, Peng Q H, Xie D C, Tan J F. 2015. Nontargeted analysis using ultraperformance liquid chromatography–quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.). Journal of Agricultural and Food Chemistry63, 9869–9878.

Deng W W, Ogita S, Ashihara H. 2008. Biosynthesis of theanine (γ-ethylamino-l-glutamic acid) in seedlings of Camellia sinensisPhytochemistry Letters1, 115–119.

Dong C X, Li F, Yang T Y, Feng L, Zhang S P, Li F D, Li W H, Xu G H, Bao S L, Wan X C, Lucas W J, Zhang Z L. 2020. Theanine transporters identified in tea plants (Camellia sinensis L.). The Plant Journal101, 57–70.

Feng L, Gao M J, Hou R Y, Hu X Y, Zhang L, Wan X C, Wei S. 2014. Determination of quality constituents in the young leaves of albino tea cultivars. Food Chemistry155, 98–104.

Fragkostefanakis S, Röth S, Schleiff E, Schar K D. 2015. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. PlantCell & Environment38, 1881–1895.

Fu X M, Chen Y Y, Mei X, Katsuno T, Kobayashi E, Dong F, Watanabe N, Yang Z Y. 2015. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. Scientific Reports5, 16858.

Fu X M, Liao Y Y, Cheng S H, Xu X, Grierson D, Yang Z Y. 2021. Nonaqueous fractionation and overexpression of fluorescent-tagged enzymes reveals the subcellular sites of L-theanine biosynthesis in tea. Plant Biotechnology Journal19, 98–108.

Grentzmann G, Ingram J A, Kelly P J, Gestaland R F, Atkins J F. 1998. A dual-lu ciferase reporter system for studying recoding signals. RNA4, 479–486.

Hu Y L, Li P P, Yao X Z, He Y M, Tang H, Zhao Q, Lu L T. 2024. Zinc treatment of tea plants improves the synthesis of trihydroxylated catechins via regulation of the zinc-sensitive protein CsHIPP3. Journal of Agricultural and Food Chemistry72, 14887–14898.

Huang Y, An J, Sircar S, Bergis C, Lopes C D, He X N, Da C B, Tan F Q, Bazin J, Antunez-Sanchez J, Mammarella M F, Devani R S, Brik-Chaouche R, Bendahmane A, Frugier F, Xia C J, Rothan C, Probst A V, Mohamed Z, Bergounioux C, et al. 2023. HSFA1a modulates plant heat stress responses and alters the 3D chromatin organization of enhancer-promoter interactions. Nature Communications14, 469.

Ikeda M, Mitsuda N, Ohme-Takagi M. 2011. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiology157, 1243–1254.

Juneja L R, Chu D C, Okubo T, Nagato Y, Yokogoshi H. 1999. L-theanine - a unique amino acid of green tea and its relaxation effect in humans. Trends in Food Science and Technology10, 199–204.

Li B J, Jiang S M, Gao L, Wang W H, Luo H Z, Dong Y N, Gao Z H, Zheng S Z, Liu X Y, Tang W Q. 2024. Heat shock factor A1s are required for phytochrome-interacting factor 4-mediated thermomorphogenesis in ArabidopsisJournal of Integrative Plant Biology66, 20–35.

Li F, Dong C X, Yang T Y, Ma J Z, Zhang S P, Wei C L, Wan X C , Zhang Z L. 2019. Seasonal theanine accumulation and related gene expression in the roots and leaf buds of tea plants (Camellia sinensis L.). Frontiers in Plant Science10, 1397.

Li G D, Li Y, Yao X Z, Lu L T. 2022. Establishment of a virus-induced gene-silencing (VIGS) system in tea plant and its use in the functional analysis of CsTCS1International Journal of Molecular Sciences24, 392.

Li H, Guo L H, Yan M L, Hu J, Lin Q Q, Wang P, Wang M L, Zhao H, Wang Y, Ni D J. 2022. A rapid and efficient transient expression system for gene function and subcellular localization studies in the tea plant (Camellia sinensis) leaves. Scientia Horticulturae297, 110927.

Li X, Ahammed G J, Li Z X, Zhang L, Wei J P, Shen C, Yan P, Zhang L P, Han W Y. 2016. Brassinosteroids improve quality of summer tea (Camellia sinensis L.) by balancing biosynthesis of polyphenols and amino acids. Frontiers in Plant Science7, 1304.

Li X, Wei J P, Ahammed G J, Zhang L, Li Y, Yan P, Zhang L P, Han W Y. 2018. Brassinosteroids attenuate moderate high temperature-caused decline in tea quality by enhancing theanine biosynthesis in Camellia sinensis L. Frontiers in Plant Science9, 1016.

Lin N, Liu X Y, Zhu W F, Cheng X, Wang X H, Wan X C, Liu L L. 2021. Ambient ultraviolet B signal modulates tea flavor characteristics via shifting a metabolic flux in flavonoid biosynthesis. Journal of Agricultural and Food Chemistry69, 3401–3414.

Liu J W, Zhang Q F, Liu M Y, Ma L F, Shi Y Z, Ruan J Y. 2016. Metabolomic analyses reveal distinct change of metabolites and quality of green tea during the short duration of a single spring season. Journal of Agricultural and Food Chemistry64, 3302–3309.

Liu Z W, Li H, Wang W L, Wu Z J, Cui X, Zhuang J. 2017. CsGOGAT is important in dynamic changes of theanine content in postharvest tea plant leaves under different temperature and shading spreadings. Journal of Agricultural and Food Chemistry65, 9693–9702.

Lu L T, Chen H F, Wang X J, Zhao Y C, Yao X Z, Xiong B, Deng Y L, Zhao D J. 2021. Genome-level diversification of eight ancient tea populations in the Guizhou and Yunnan regions identifies candidate genes for core agronomic traits. Horticulture Research8,190.

Lü X P, Shao K Z, Xu J Y, Li J L, Ren W, Chen J, Zhao L Y, Zhao Q, Zhang J L. 2022. A heat shock transcription factor gene (HaHSFA1) from a desert shrub, Haloxylon ammodendron, elevates salt tolerance in Arabidopsis thalianaEnvironmental and Experimental Botany201, 104954.

Raturi V, Zinta G. 2024. HSFA1 heat shock factors integrate warm temperature and heat signals in plants. Trends in Plant Science29, 1165–1167.

Ren T Y, Zheng P C, Zhang K X, Liao J R, Xiong F, Shen Q, Ma Y C, Fang W P, Zhu X J. 2021. Effects of GABA on the polyphenol accumulation and antioxidant activities in tea plants (Camellia sinensis L.) under heat-stress conditions. Plant Physiology and Biochemistry159, 363–371.

Scharf K D, Berberich T, Ebersberger I, Nover L. 2012. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms1819, 104–119.

Shim D, Hwang J U, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y. 2009. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. The Plant Cell21, 4031–4043.

Tan W R, Chen J H, Yue X L, Chai S L, Liu W, Li C L, Yang F, Gao Y F, Gutiérrez Rodríguez L, Resco de Dios V, Zhang D W, Yao Y N. 2023. The heat response regulators HSFA1s promote Arabidopsis thermomorphogenesis via stabilizing PIF4 during the day. Science Advances9, eadh1738.

Tsushida T, Takeo T. 1984. Ethylamine content of fresh tea shoots and made tea determined by high performance liquid chromatography. Journal of the Science of Food and Agriculture35, 77–83.

Wang H R, Feng M, Jiang Y J, Du D J, Dong C Q, Zhang Z H, Wang W X, Liu J, Liu X Q, Li S F, Chen Y M, Guo W L, Xin M M, Yao Y Y, Ni Z F, Sun Q X, Peng H R, Liu J. 2023. Thermosensitive SUMOylation of TaHsfA1 defines a dynamic ON/OFF molecular switch for the heat stress response in wheat. The Plant Cell35, 3889–3910.

Wei C L, Yang H, Wang S B, Zhao J, Liu C, Gao L P, Xia E H, Lu Y, Tai Y L, She G B, Sun J, Cao H S, Tong W, Gao Q, Li Y Y, Deng W W, Jiang X L, Wang W Z, Chen Q, Zhang S H, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America115, E4151–E4158.

Wen B B, Luo Y, Liu D M, Zhang X N, Peng Z, Wang K B, Li J, Huang J A, Liu Z H. 2020. The R2R3-MYB transcription factor CsMYB73 negatively regulates L-Theanine biosynthesis in tea plants (Camellia sinensis L.). Plant Science298, 110546.

Wu W, Wang M M, Gong H, Liu X F, Guo D L, Sun N J, Huang J W, Zhu Q G, Chen K S, Yin X R. 2020. High CO2/hypoxia-induced softening of persimmon fruit is modulated by DkERF8/16 and DkNAC9 complexes. Journal of Experimental Botany71, 2690–2700.

Xu W P, Song Q S, Li D X, Wan X C. 2012. Discrimination of the production season of Chinese green tea by chemical analysis in combination with supervised pattern recognition. Journal of Agricultural and Food Chemistry60, 7064–7070.

Yuan Z K D, Tian X Y, Yao X Z, Ye S Y, Li P, Tang H, Jiao Y J, Zhao Q, Lu L T. 2025. The CsGT1A-CsSCPL11-IA module positively regulates galloylated catechin biosynthesis in tea plants. Industrial Crops and Products227, 120859.

Zhang S P, Lin S J, Jin R P, Zhang Y N, Zhang X X, Zhu B Y, Luo Y Y, Ham B K, Chen J Y, Yang T Y, Wan X C, Zhang Z L. 2025. CATIONIC AMINO ACID TRANSPORTER 1 modulates amino acid distribution between stem and leaf in new shoots: A case study of theanine distribution in tea plants (Camellia sinensis). Plant Physiology198, kiaf255.

Zhang X Y, Xu W L, Ni D J, Wang M L, Guo G Y. 2020. Genome-wide characterization of tea plant (Camellia sinensis) Hsf transcription factor family and role of CsHsfA2 in heat tolerance. BMC Plant Biology20, 1–17.

Zhang Y R, Li P H, She G H, Xu Y J, Peng A Q, Wan X C, Zhao J. 2021. Molecular basis of the distinct metabolic features in shoot tips and roots of tea plants (Camellia sinensis): Characterization of MYB regulator for root theanine synthesis. Journal of Agricultural and Food Chemistry69, 3415–3429.

Zhu Q F, Liu L J, Lu X F, Du X X, Xiang P, Cheng B S, Tan M, Huang J X, Wu L J, Kong W L, Shi Y T, Wu L Y, Lin J K. 2023. The biosynthesis of EGCG, theanine and caffeine in response to temperature is mediated by hormone signal transduction factors in tea plant (Camellia sinensis L.). Frontiers in Plant Science14, 1149182.

[1] Siya Li, Lu Cao, Ziwen Zhou, Yaohua Cheng, Xianchen Zhang, Yeyun Li. The miR164a targets CsNAC1 to negatively regulate the cold tolerance of tea plants (Camellia sinensis)[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3073-3086.
[2] Na Chang, Xiaotian Pi, Ziwen Zhou, Yeyun Li, Xianchen Zhang. Suppression of CsFAD3 in a JA-dependent manner, but not through the SA pathway, impairs drought stress tolerance in tea[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3737-3750.
[3] TAO Ling-ling, TING Yu-jie, CHEN Hong-rong, WEN Hui-lin, XIE Hui, LUO Ling-yao, HUANG Ke-lin, ZHU Jun-yan, LIU Sheng-rui, WEI Chao-ling. Core collection construction of tea plant germplasm in Anhui Province based on genetic diversity analysis using simple sequence repeat markers[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2719-2728.
[4] HAN Shan-jie, WANG Meng-xin, WANG Yan-su, WANG Yun-gang, CUI Lin, HAN Bao-yu. Exploiting push-pull strategy to combat the tea green leafhopper based on volatiles of Lavandula angustifolia and Flemingia macrophylla[J]. >Journal of Integrative Agriculture, 2020, 19(1): 193-203.
[5] SUN Xiao-ling, LI Xi-wang, XIN Zhao-jun, HAN Juan-juan, RAN Wei, LEI Shu. Development of synthetic volatile attractant for male Ectropis obliqua moths[J]. >Journal of Integrative Agriculture, 2016, 15(7): 1532-1539.
[6] LIANG Li-yun, LIU Li-fang, YU Xiao-ping , HAN Bao-yu. Evaluation of the Resistance of Different Tea Cultivars to TeaAphids by EPG Technique[J]. >Journal of Integrative Agriculture, 2012, 12(12): 2028-2034.
No Suggested Reading articles found!