|
Adams T H, Boylan M T, Timberlake W E. 1988. brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell, 54, 353–362.
Adams T H, Wieser J K, Yu J H. 1998. Asexual sporulation in Aspergillus nidulans. Microbiology and Molecular Biology Reviews, 62, 35–54.
Andrianopoulos A, Timberlake W E. 1994. The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Molecular and Cellular Biology, 14, 2503–2515.
Aramayo R, Adams T, Timberlake W. 1989. A large cluster of highly expressed genes is dispensable for growth and development in Aspergillus nidulans. Genetics, 122, 65–71.
Aramayo R, Timberlake W E. 1993. The Aspergillus nidulans yA gene is regulated by abaA. The EMBO Journal, 12, 2039–2048.
Bayram Ö, Biesemann C, Krappmann S, Galland P, Braus G H. 2008a. More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development. Molecular Biology of the Cell, 19, 3254–3262.
Bayram Ö, Feussner K, Dumkow M, Herrfurth C, Feussner I, Braus G H. 2016. Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development. Fungal Genetics and Biology, 87, 30–53.
Bayram Ö, Krappmann S, Ni M, Bok J W, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon N J, Keller N P, Yu J H. 2008b. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science, 320, 1504–1506.
Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R. 2005. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Current Biology, 15, 1833–1838.
Bok J W, Keller N P. 2004. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryotic Cell, 3, 527–535.
Bölker M. 1998. Sex and crime: Heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genetics and Biology, 25, 143–156.
Boylan M T, Mirabito P M, Willett C E, Zimmerman C R, Timberlake W E. 1987. Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulans. Molecular and Cellular Biology, 7, 3113-3118.
Brown D, Yu J, Kelkar H, Fernandes M, Nesbitt T, Keller N, Adams T, Leonard T. 1996. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proceedings of the National Academy of Sciences of the United States of America, 93, 1418–1422.
Busby T M, Miller K Y, Miller B L. 1996. Suppression and enhancement of the Aspergillus nidulans medusa mutation by altered dosage of the bristle and stunted genes. Genetics, 143, 155–163.
Cai J, Zeng H, Shima Y, Hatabayashi H, Nakagawa H, Ito Y, Adachi Y, Nakajima H, Yabe K. 2008. Involvement of the nadA gene in formation of G-group aflatoxins in Aspergillus parasiticus. Fungal Genetics and Biology, 45, 1081–1093.
Calvo A M, Bok J, Brooks W, Keller N P. 2004. veA is required for toxin and sclerotial production in Aspergillus parasiticus. Applied and Environmental Microbiology, 70, 4733–4739.
Calvo A M, Wilson R A, Bok J W, Keller N P. 2002. Relationship between secondary metabolism and fungal development. Microbiology and Molecular Biology Reviews, 66, 447–459.
Cary J W, Ehrlich K C, Bland J M, Montalbano B G. 2006. The aflatoxin biosynthesis cluster gene, aflX, encodes an oxidoreductase involved in conversion of versicolorin A to demethylsterigmatocystin. Applied and Environmental Microbiology, 72, 1096–1101.
Cary J W, Wright M, Bhatnagar D, Lee R, Chu F S. 1996. Molecular characterization of an Aspergillus parasiticus dehydrogenase gene, norA, located on the aflatoxin biosynthesis gene cluster. Applied and Environmental Microbiology, 62, 360–366.
Chang P K. 2003. The Aspergillus parasiticus protein AFLJ interacts with the aflatoxin pathway-specific regulator AFLR. Molecular Genetics and Genomics, 268, 711–719.
Chang P K, Cary J W, Yu J, Bhatnagar D, Cleveland T E. 1995. The Aspergillus parasiticus polyketide synthase gene pksA, a homolog of Aspergillus nidulans wA, is required for aflatoxin B1 biosynthesis. Molecular and General Genetics: MGG, 248, 270–277.
Chang P K, Scharfenstein L L, Ehrlich K C, Wei Q, Bhatnagar D, Ingber B F. 2012a. Effects of laeA deletion on Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production. Fungal Biology, 116, 298–307.
Chang P K, Scharfenstein L L, Li R W, Arroyo-Manzanares N, De Saeger S, Di Mavungu J D. 2017. Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites. Fungal Genetics and Biology, 104, 29–37.
Chang P K, Scharfenstein L L, Mack B, Ehrlich K C. 2012b. Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis. Applied and Environmental Microbiology, 78, 7557–7563.
Chang P K, Yabe K, Yu J. 2004a. The Aspergillus parasiticus estA-encoded esterase converts versiconal hemiacetal acetate to versiconal and versiconol acetate to versiconol in aflatoxin biosynthesis. Applied and Environmental Microbiology, 70, 3593–3599.
Chang P K, Yu J, Ehrlich K C, Boue S M, Montalbano B G, Bhatnagar D, Cleveland T E. 2000. adhA in Aspergillus parasiticus is involved in conversion of 5′-hydroxyaverantin to averufin. Applied and Environmental Microbiology, 66, 4715–4719.
Chang P K, Yu J, Yu J H. 2004b. aflT, a MFS transporter-encoding gene located in the aflatoxin gene cluster, does not have a significant role in aflatoxin secretion. Fungal Genetics and Biology, 41, 911–920.
Chang Y C, Timberlake W E. 1993. Identification of Aspergillus brlA response elements (BREs) by genetic selection in yeast. Genetics, 133, 29–38.
Clutterbuck A. 1972. Absence of laccase from yellow-spored mutants of Aspergillus nidulans. Microbiology, 70, 423–435.
Crespo-Sempere A, Marin S, Sanchis V, Ramos A. 2013. VeA and LaeA transcriptional factors regulate ochratoxin A biosynthesis in Aspergillus carbonarius. International Journal of Food Microbiology, 166, 479–486.
Deepika V, Murali T, Satyamoorthy K. 2016. Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: A review. Microbiological Research, 182, 125–140.
Du W, Obrian G, Payne G. 2007. Function and regulation of aflJ in the accumulation of aflatoxin early pathway intermediate in Aspergillus flavus. Food Additives and Contaminants, 24, 1043–1050.
Duran R M, Cary J W, Calvo A M. 2007. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Applied Microbiology and Biotechnology, 73, 1158–1168.
Ehrlich K, Montalbano B, Cary J. 1999. Binding of the C6-zinc cluster protein, AFLR, to the promoters of aflatoxin pathway biosynthesis genes in Aspergillus parasiticus. Gene, 230, 249–257.
Ehrlich K C. 2009. Predicted roles of the uncharacterized clustered genes in aflatoxin biosynthesis. Toxins, 1, 37–58.
Ehrlich K C, Chang P K, Scharfenstein Jr L L, Cary J W, Crawford J M, Townsend C A. 2010a. Absence of the aflatoxin biosynthesis gene, norA, allows accumulation of deoxyaflatoxin B1 in Aspergillus flavus cultures. FEMS Microbiology Letters, 305, 65–70.
Ehrlich K C, Chang P K, Yu J, Cotty P J. 2004. Aflatoxin biosynthesis cluster gene cypA is required for G aflatoxin formation. Applied and Environmental Microbiology, 70, 6518–6524.
Ehrlich K C, Li P, Scharfenstein L, Chang P K. 2010b. HypC, the anthrone oxidase involved in aflatoxin biosynthesis. Applied and Environmental Microbiology, 76, 3374–3377.
Ehrlich K C, Mack B M, Wei Q, Li P, Roze L V, Dazzo F, Cary J W, Bhatnagar D, Linz J E. 2012. Association with AflR in endosomes reveals new functions for AflJ in aflatoxin biosynthesis. Toxins, 4, 1582–1600.
Ehrlich K C, Montalbano B, Boué S M, Bhatnagar D. 2005. An aflatoxin biosynthesis cluster gene encodes a novel oxidase required for conversion of versicolorin A to sterigmatocystin. Applied and Environmental Microbiology, 71, 8963–8965.
Ehrlich K C, Scharfenstein Jr L L, Montalbano B G, Chang P K. 2008. Are the genes nadA and norB involved in formation of aflatoxin G1? International Journal of Molecular Sciences, 9, 1717–1729.
Etxebeste O, Herrero‐García E, Araújo‐Bazán L, Rodríguez‐Urra A B, Garzia A, Ugalde U, Espeso E A. 2009. The bZIP‐type transcription factor FlbB regulates distinct morphogenetic stages of colony formation in Aspergillus nidulans. Molecular Microbiology, 73, 775–789.
Etxebeste O, Ni M, Garzia A, Kwon N J, Fischer R, Yu J H, Espeso E A, Ugalde U. 2008. Basic-zipper-type transcription factor FlbB controls asexual development in Aspergillus nidulans. Eukaryotic Cell, 7, 38–48.
Fischer R, Kües U. 2006. Asexual sporulation in mycelial fungi. In: Growth, Differentiation and Sexuality. Springer, Berlin Heidelberg, pp. 263–292.
Froehlich A C, Liu Y, Loros J J, Dunlap J C. 2002. White Collar–1, a circadian blue light photoreceptor, binding to the frequency promoter. Science, 297, 815–819.
Fu J, Gu M, Yan H, Zhang M, Xie H, Yue X, Zhang Q, Li P. 2023. Protein biomarker for early diagnosis of microbial toxin contamination: Using Aspergillus flavus as an example. Food Frontiers, 4, 2013–2023.
Garzia A, Etxebeste O, Herrero‐Garcia E, Fischer R, Espeso E A, Ugalde U. 2009. Aspergillus nidulans FlbE is an upstream developmental activator of conidiation functionally associated with the putative transcription factor FlbB. Molecular Microbiology, 71, 172–184.
Garzia A, Etxebeste O, Herrero‐García E, Ugalde U, Espeso E A. 2010. The concerted action of bZip and cMyb transcription factors FlbB and FlbD induces brlA expression and asexual development in Aspergillus nidulans. Molecular Microbiology, 75, 1314–1324.
Guzmán-de-Peña D, Aguirre J, Ruiz-Herrera J. 1998. Correlation between the regulation of sterigmatocystin biosynthesis and asexual and sexual sporulation in Emericella nidulans. Antonie van Leeuwenhoek, 73, 199–205.
Han K H, Han K Y, Kim M S, Lee D B, Kim J H, Chae S K, Chae K S, Han D M. 2003. Regulation of nsdD expression in Aspergillus nidulans. Journal of Microbiology, 41, 259–261.
Han K H, Han K Y, Yu J H, Chae K S, Jahng K Y, Han D M. 2001. The nsdD gene encodes a putative GATA‐type transcription factor necessary for sexual development of Aspergillus nidulans. Molecular Microbiology, 41, 299–309.
Han K H, Kim J H, Moon H, Kim S, Lee S S, Han D M, Jahng K Y, Chae K S. 2008. The Aspergillus nidulans esdC (early sexual development) gene is necessary for sexual development and is controlled by veA and a heterotrimeric G protein. Fungal Genetics and Biology, 45, 310–318.
Haque M A, Wang Y, Shen Z, Li X, Saleemi M K, He C. 2020. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microbial Pathogenesis, 142, 104095.
Hardie D G, Hawley S A, Scott J W. 2006. AMP‐activated protein kinase - development of the energy sensor concept. The Journal of Physiology, 574, 7–15.
He Q, Cheng P, Yang Y, Wang L, Gardner K H, Liu Y. 2002. White collar-1, a DNA binding transcription factor and a light sensor. Science, 297, 840–843.
Henry K M, Townsend C A. 2005. Ordering the reductive and cytochrome P450 oxidative steps in demethylsterigmatocystin formation yields general insights into the biosynthesis of aflatoxin and related fungal metabolites. Journal of the American Chemical Society, 127, 3724–3733.
Holmes R A. 2008. Characterization of an aflatoxin biosynthetic gene and resistance in maize seeds to Aspergillus flavus. Ph D thesis, North Carolina State University, America.
Jia M, Liao X, Fang L, Jia B, Liu M, Li D, Zhou L, Kong W. 2021. Recent advances on immunosensors for mycotoxins in foods and other commodities. TrAC Trends in Analytical Chemistry, 136, 116193.
Kale S P, Milde L, Trapp M K, Frisvad J C, Keller N P, Bok J W. 2008. Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genetics and Biology, 45, 1422–1429.
Kato N, Brooks W, Calvo A M. 2003. The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryotic Cell, 2, 1178–1186.
Kelkar H S, Skloss T W, Haw J F, Keller N P, Adams T H. 1997. Aspergillus nidulans stcL encodes a putative cytochrome P450 monooxygenase required for bisfuran desaturation during aflatoxin/sterigmatocystin biosynthesis. Journal of Biological Chemistry, 272, 1589–1594.
Keller N P, Brown D, Butchko R, Fernandes M, Kelkar H, Nesbitt C, Segner S, Bhatnagar D, Cleveland T, Adams T. 1995a. A conserved polyketide mycotoxin gene cluster in Aspergillus nidulans. Molecular Approaches to Food Safety Issues Involving Toxic Microorganisms, 18, 263–277.
Keller N P, Kantz N J, Adams T H. 1994. Aspergillus nidulans verA is required for production of the mycotoxin sterigmatocystin. Applied and Environmental Microbiology, 60, 1444–1450.
Keller N P, Segner S, Bhatnagar D, Adams T H. 1995b. stcS, a putative P450 monooxygenase, is required for the conversion of versicolorin A to sterigmatocystin in Aspergillus nidulans. Applied and Environmental Microbiology, 61, 3628–3632.
Kim H R, Chae K S, Han K H, Han D M. 2009. The nsdC gene encoding a putative C2H2-type transcription factor is a key activator of sexual development in Aspergillus nidulans. Genetics, 182, 771–783.
Kim H S, Han K Y, Kim K J, Han D M, Jahng K Y, Chae K S. 2002. The veA gene activates sexual development in Aspergillus nidulans. Fungal Genetics and Biology, 37, 72–80.
Kim M J, Lee M K, Pham H Q, Gu M J, Zhu B, Son S H, Hahn D, Shin J H, Yu J H, Park H S. 2020. The velvet regulator VosA governs survival and secondary metabolism of sexual spores in Aspergillus nidulans. Genes, 11, 103.
Krappmann S, Bayram O Z R, Braus G H. 2005. Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryotic Cell, 4, 1298–1307.
Kwon N J, Shin K S, Yu J H. 2010a. Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genetics and Biology, 47, 981–993.
Kwon N J, Garzia A, Espeso E A, Ugalde U, Yu J H. 2010b. FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans. Molecular Microbiology, 77, 1203–1219.
Law D J, Timberlake W E. 1980. Developmental regulation of laccase levels in Aspergillus nidulans. Journal of Bacteriology, 144, 509–517.
Lee B N, Adams T. 1996. FluG and flbA function interdependently to initiate conidiophore development in Aspergillus nidulans through brlA beta activation. The EMBO Journal, 15, 299–309.
Lee B N, Adams T H. 1994. Overexpression of fIbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brIA and premature initiation of development. Molecular Microbiology, 14, 323–334.
Lengeler K B, Davidson R C, D’souza C, Harashima T, Shen W C, Wang P, Pan X, Waugh M, Heitman J. 2000. Signal transduction cascades regulating fungal development and virulence. Microbiology and Molecular Biology Reviews, 64, 746–785.
Liang M, Cai X, Gao Y, Yan H, Fu J, Tang X, Zhang Q, Li P. 2022. A versatile nanozyme integrated colorimetric and photothermal lateral flow immunoassay for highly sensitive and reliable Aspergillus flavus detection. Biosensors and Bioelectronics, 213, 114435.
MacPherson S, Larochelle M, Turcotte B. 2006. A fungal family of transcriptional regulators: The zinc cluster proteins. Microbiology and Molecular Biology Reviews, 70, 583–604.
Mah J H, Yu J H. 2006. Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryotic Cell, 5, 1585–1595.
Marshall M A, Timberlake W E. 1991. Aspergillus nidulans wetA activates spore-specific gene expression. Molecular and Cellular Biology, 11, 55–62.
Mayorga M E, Timberlake W. 1990. Isolation and molecular characterization of the Aspergillus nidulans wA gene. Genetics, 126, 73–79.
Mayorga M E, Timberlake W E. 1992. The developmentally regulated Aspergillus nidulans wA gene encodes a polypeptide homologous to polyketide and fatty acid synthases. Molecular & General Genetics: MGG, 235, 205–212.
Meyers D M, Obrian G, Du W, Bhatnagar D, Payne G. 1998. Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin. Applied and Environmental Microbiology, 64, 3713–3717.
Miller K Y, Toennis T M, Adams T H, Miller B L. 1991. Isolation and transcriptional characterization of a morphological modifier: The Aspergillus nidulans stunted (stuA) gene. Molecular and General Genetics: MGG, 227, 285–292.
Mirabito P M, Adams T H, Timberlake W E. 1989. Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell, 57, 859–868.
Mooney J L, Yager L N. 1990. Light is required for conidiation in Aspergillus nidulans. Genes & Development, 4, 1473–1482.
Morita H, Hatamoto O, Masuda T, Sato T, Takeuchi M. 2007. Function analysis of steA homolog in Aspergillus oryzae. Fungal Genetics and Biology, 44, 330–338.
Morris A J, Malbon C C. 1999. Physiological regulation of G protein-linked signaling. Physiological Reviews, 79, 1373–1430.
Ni M, Yu J H. 2007. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS ONE, 2, e970.
O’Hara E B, Timberlake W. 1989. Molecular characterization of the Aspergillus nidulans yA locus. Genetics, 121, 249–254.
Park H S, Nam T Y, Han K H, Kim S C, Yu J H. 2014. VelC positively controls sexual development in Aspergillus nidulans. PLoS ONE, 9, e89883.
Park H S, Ni M, Jeong K C, Kim Y H, Yu J H. 2012. The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans. PLoS ONE, 7, e45935.
Payne G, Brown M. 1998. Genetics and physiology of aflatoxin biosynthesis. Annual Review of Phytopathology, 36, 329–362.
Pontecorvo G, Roper J, Chemmons L, MacDonald K, Bufton A. 1953. The genetics of Aspergillus nidulans. Advances in Genetics, 5, 141–238.
Prade R A, Timberlake W E. 1993. The Aspergillus nidulans brlA regulatory locus consists of overlapping transcription units that are individually required for conidiophore development. The EMBO Journal, 12, 2439–2447.
Prieto R, Woloshuk C. 1997. ord1, an oxidoreductase gene responsible for conversion of O-methylsterigmatocystin to aflatoxin in Aspergillus flavus. Applied and Environmental Microbiology, 63, 1661–1666.
Purschwitz J, Müller S, Kastner C, Schöser M, Haas H, Espeso E A, Atoui A, Calvo A M, Fischer R. 2008. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Current Biology, 18, 255–259.
Rodrigues I, Naehrer K. 2012. A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins, 4, 663–675.
Röhrig J, Kastner C, Fischer R. 2013. Light inhibits spore germination through phytochrome in Aspergillus nidulans. Current Genetics, 59, 55–62.
Roze L V, Hong S Y, Linz J E. 2013. Aflatoxin biosynthesis: Current frontiers. Annual Review of Food Science and Technology, 4, 293–311.
Sakuno E, Wen Y, Hatabayashi H, Arai H, Aoki C, Yabe K, Nakajima H. 2005. Aspergillus parasiticus cyclase catalyzes two dehydration steps in aflatoxin biosynthesis. Applied and Environmental Microbiology, 71, 2999–3006.
Sakuno E, Yabe K, Nakajima H. 2003. Involvement of two cytosolic enzymes and a novel intermediate, 5´-oxoaverantin, in the pathway from 5´-hydroxyaverantin to averufin in aflatoxin biosynthesis. Applied and Environmental Microbiology, 69, 6418–6426.
Sarikaya Bayram Ö, Bayram Ö, Valerius O, Park H S, Irniger S, Gerke J, Ni M, Han K H, Yu J H, Braus G H. 2010. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genetics, 6, e1001226.
Seo J A, Guan Y, Yu J H. 2003. Suppressor mutations bypass the requirement of fluG for asexual sporulation and sterigmatocystin production in Aspergillus nidulans. Genetics, 165, 1083–1093.
Seo J A, Guan Y, Yu J H. 2006. FluG-dependent asexual development in Aspergillus nidulans occurs via derepression. Genetics, 172, 1535–1544.
Sewall T C, Mims C W, Timberlake W E. 1990. abaA controls phialide differentiation in Aspergillus nidulans. The Plant Cell, 2, 731–739.
Sheppard D C, Doedt T, Chiang L Y, Kim H S, Chen D, Nierman W C, Filler S G. 2005. The Aspergillus fumigatus StuA protein governs the up-regulation of a discrete transcriptional program during the acquisition of developmental competence. Molecular Biology of the Cell, 16, 5866–5879.
Shimizu K, Keller N P. 2001. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics, 157, 591–600.
Streit E, Naehrer K, Rodrigues I, Schatzmayr G. 2013. Mycotoxin occurrence in feed and feed raw materials worldwide: Long‐term analysis with special focus on Europe and Asia. Journal of the Science of Food and Agriculture, 93, 2892–2899.
Stringer M, Dean R, Sewall T, Timberlake W. 1991. Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes & Development, 5, 1161–1171.
Tao L, Yu J H. 2011. AbaA and WetA govern distinct stages of Aspergillus fumigatus development. Microbiology, 157, 313–326.
Tilburn J, Sarkar S, Widdick D, Espeso E, Orejas M, Mungroo J, Penalva M, Arst Jr H. 1995. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid‐and alkaline‐expressed genes by ambient pH. The EMBO Journal, 14, 779–790.
Vallim M A, Miller K Y, Miller B L. 2000. Aspergillus SteA (sterile12‐like) is a homeodomain‐C2/H2‐Zn+ 2 finger transcription factor required for sexual reproduction. Molecular Microbiology, 36, 290–301.
Varga J, Frisvad J C, Samson R. 2011. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Studies in Mycology, 69, 57–80.
Vienken K, Fischer R. 2006. The Zn(II) 2Cys6 putative transcription factor NosA controls fruiting body formation in Aspergillus nidulans. Molecular Microbiology, 61, 544–554.
Vienken K, Scherer M, Fischer R. 2005. The Zn(II) 2Cys6 putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under low-carbon conditions and in submersed culture. Genetics, 169, 619–630.
Weaver A C, Adams N, Yiannikouris A. 2020. Invited Review: Use of technology to assess and monitor multimycotoxin and emerging mycotoxin challenges in feedstuffs. Applied Animal Science, 36, 19–25.
Wen Y, Hatabayashi H, Arai H, Kitamoto H K, Yabe K. 2005. Function of the cypX and moxY genes in aflatoxin biosynthesis in Aspergillus parasiticus. Applied and Environmental Microbiology, 71, 3192–3198.
Wieser J, Adams T H. 1995. flbD encodes a Myb-like DNA-binding protein that coordinates initiation of Aspergillus nidulans conidiophore development. Genes & Development, 9, 491–502.
Wieser J, Lee B N, Fondon J W, Adams T H. 1994. Genetic requirements for initiating asexual development in Aspergillus nidulans. Current Genetics, 27, 62–69.
Wieser J, Yu J H, Adams T H. 1997. Dominant mutations affecting both sporulation and sterigmatocystin biosynthesis in Aspergillus nidulans. Current Genetics, 32, 218–224.
Wu J, Miller B L. 1997. Aspergillus asexual reproduction and sexual reproduction are differentially affected by transcriptional and translational mechanisms regulating stunted gene expression. Molecular and Cellular Biology, 17, 6191-6201.
Xiao P, Shin K S, Wang T, Yu J H. 2010. Aspergillus fumigatus flbB encodes two basic leucine zipper domain (bZIP) proteins required for proper asexual development and gliotoxin production. Eukaryotic Cell, 9, 1711–1723.
Xie T, Misumi J, Aoki K, Zhao W, Liu S. 2000. Absence of p53-mediated G1 arrest with induction of MDM2 in sterigmatocystin-treated cells. International Journal of Oncology, 17, 737–779.
Yabe K, Ando Y, Hashimoto J, Hamasaki T. 1989. Two distinct O-methyltransferases in aflatoxin biosynthesis. Applied and Environmental Microbiology, 55, 2172–2177.
Yabe K, Hamasaki T. 1993. Stereochemistry during aflatoxin biosynthesis: Cyclase reaction in the conversion of versiconal to versicolorin B and racemization of versiconal hemiacetal acetate. Applied and Environmental Microbiology, 59, 2493–2500.
Yan H, Fu J, Tang X, Wang D, Zhang Q, Li P. 2022. Sensitivity enhancement of paper-based sandwich immunosensor via nanobody immobilization instead of IgG antibody, taking aflatoxingenetic fungi as an analyte example. Sensors and Actuators (B: Chemical), 373, 132760.
Yu J, Cary J, Bhatnagar D, Cleveland T, Keller N, Chu F. 1993. Cloning and characterization of a cDNA from Aspergillus parasiticus encoding an O-methyltransferase involved in aflatoxin biosynthesis. Applied and Environmental Microbiology, 59, 3564–3571.
Yu J, Chang P K, Bhatnagar D, Cleveland T E. 2003. Cloning and functional expression of an esterase gene in Aspergillus parasiticus. Mycopathologia, 156, 227–234.
Yu J, Chang P K, Cary J W, Bhatnagar D, Cleveland T E. 1997. avnA, a gene encoding a cytochrome P450 monooxygenase, is involved in the conversion of averantin to averufin in aflatoxin biosynthesis in Aspergillus parasiticus. Applied and Environmental Microbiology, 63, 1349–1356.
Yu J, Chang P K, Ehrlich K C, Cary J W, Bhatnagar D, Cleveland T E, Payne G A, Linz J E, Woloshuk C P, Bennett J W. 2004. Clustered pathway genes in aflatoxin biosynthesis. Applied and Environmental Microbiology, 70, 1253–1262.
Yu J, Chang P K, Ehrlich K C, Cary J W, Montalbano B, Dyer J M, Bhatnagar D, Cleveland T E. 1998. Characterization of the critical amino acids of an Aspergillus parasiticus cytochrome P–450 monooxygenase encoded by ordA that is involved in the biosynthesis of aflatoxins B1, G1, B2, and G2. Applied and Environmental Microbiology, 64, 4834–4841.
Yu J, Chang P K, Payne G A, Cary J W, Bhatnagar D, Cleveland T E. 1995. Comparison of the omtA genes encoding O-methyltransferases involved in aflatoxin biosynthesis from Aspergillus parasiticus and A. flavus. Gene, 163, 121–125.
Yu J, Woloshuk C P, Bhatnagar D, Cleveland T E. 2000. Cloning and characterization of avfA and omtB genes involved in aflatoxin biosynthesis in three Aspergillus species. Gene, 248, 157–167.
Yu J H, Butchko R A, Fernandes M, Keller N P, Leonard T J, Adams T H. 1996a. Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavus. Current Genetics, 29, 549–555.
Yu J H, Keller N. 2005. Regulation of secondary metabolism in filamentous fungi. Annual Review of Phytopathology, 43, 437–458.
Yu J H, Rosén S, Adams T H. 1999. Extragenic suppressors of loss-of-function mutations in the Aspergillus FlbA regulator of G-protein signaling domain protein. Genetics, 151, 97–105.
Yu J H, Wieser J, Adams T. 1996b. The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. The EMBO Journal, 15, 5184–5190.
Zhang L, Dou X W, Zhang C, Logrieco A F, Yang M H. 2018. A review of current methods for analysis of mycotoxins in herbal medicines. Toxins, 10, 65.
Zhou R, Linz J E. 1999. Enzymatic function of the Nor-1 protein in aflatoxin biosynthesis in Aspergillus parasiticus. Applied and Environmental Microbiology, 65, 5639–5641.
|