Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (2): 585-601    DOI: 10.1016/j.jia.2025.10.017
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Functional genes associated with the occurrence of mycotoxins produced by Aspergillus in foods

Mei Gu1, Can Liu1, Xiaofeng Yue1, Du Wang1, Xiaoqian Tang1, Qi Zhang1, 2, 3#, Peiwu Li1, 2, 3, 4#

1 Key Laboratory of Biology and Genetic Improvement of Oil Crops and Key Laboratory of Detection for Mycotoxins of Ministry of Agriculture and Rural Affairs/Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, China

2 Institute of Food Safety, Hubei University, Wuhan 430061, China

3 Hubei Hongshan Laboratory, Wuhan 430061, China

4 Xianghu Laboratory, Hangzhou 311231, China

 Highlights 
This review provides a comprehensive summary of the genes involved in aflatoxin biosynthesis and constructs the regulatory network governing toxin production, offering new insights for the development of aflatoxin control strategies.
It also systematically summarizes the functions of key genes regulating the growth and development of Aspergillus species, thereby laying a theoretical foundation for the development of source-level control technologies against Aspergillus.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

曲霉菌是一种广泛存在的真菌,其产生的毒素(次生代谢产物)包括杂色曲霉毒素、黄曲霉毒素、赭曲霉毒素A和环匹阿尼酸等,广泛存在于多种食品中,导致其遭受严重污染,危害人类健康。杂色曲霉毒素是黄曲霉毒素合成通路中的一种关键的代谢物,黄曲霉毒素主要是由黄曲霉和寄生曲霉产生的已知真菌毒素中毒性最强,致癌性最强的霉菌毒素。赭曲霉毒素由赭曲霉,碳色曲霉等多种曲霉产生。赭曲霉毒素又分为赭曲霉毒素AOTA)、赭曲霉毒素BOTB)和赭曲霉毒素COTC)三类,其中赭曲霉毒素A被认为是最丰富、危害最大的霉菌毒素。此外,由青霉菌和曲霉菌产生的环匹阿尼酸也是一种非常重要的霉菌毒素。人类如果意外误食被真菌毒素污染的食物,会导致多种癌症,内脏疾病、癫痫发作,甚至死亡。因此真菌毒素的防控技术的开发对保障农产品质量安全具有重要意义。研究参与曲霉菌生长、繁殖和毒素生物合成的功能基因,对于制定防治霉菌毒素污染的创新策略——从源头阻断毒素合成,最大限度地减少毒素产生,降低污染风险奠定理论基础。构巢曲霉能产生多种与生物技术和人类健康息息相关的化合物,是研究曲霉菌生长发育、次生代谢与环境因子相互作用的理想模型,因此被广泛用作真核生物遗传学和次生代谢研究的模式真菌。随着分子生物学技术的快速发展,一些功能基因不仅在构巢曲霉中得到研究,也在黄曲霉、寄生曲霉和烟曲霉等其他曲霉中被广泛关注。对同一功能基因在多种曲霉菌中的研究有助于阐明功能基因的保守性及其潜在的新功能,揭示物种间差异,并为开发创新型防控策略提供新思路。然而,现有综述多聚焦于曲霉菌中某一特定的生物学过程,缺乏对主要功能基因的系统性概述。本文综述了曲霉属真菌中参与多种真菌毒素(如杂色曲霉毒素、黄曲霉毒素、赭曲霉毒素和环匹阿尼酸等)生物合成,以及调控生长发育和对环境因子(光照、营养因子和pH)响应的关键功能基因的调控机制,同时讨论了近年来分子生物学技术在功能基因研究中的进展,以期为新功能基因的挖掘提供参考与技术指导



Abstract  

Aspergillus species are ubiquitous fungi that produce mycotoxins (secondary metabolites) known as sterigmatocystin and aflatoxins in many different kinds of foods, which leads to serious contamination in agricultural products, thereby endangering human health.  Extensive studies on Aspergillus fungi have been conducted on growth and development, aflatoxin biosynthesis, and their interactions with environment.  Here, we summarized a series of functional genes of the main Aspergillus fungi relative to toxins occurrence in foods, which revealed the signal transduction mechanisms of their involvement in growth and development, toxin production, and response to light, anticipating providing theoretical guidance on developing control and prevention technologies for mycotoxin contamination in agricultural products to ensure food safety.

Keywords:  functional genes       Aspergillus        a?atoxin       development  
Received: 18 March 2025   Accepted: 13 September 2025 Online: 01 November 2025  
Fund: 

This work was supported by the key project of National Natural Sciences Foundation of China (U22A20551, 32030085), the Major Project of Hubei Hongshan Laboratory, China (2021hszd015), the Hubei Province Major Science and Technology Special Project, China (2023BBA002), the National Natural Sciences Foundation of China (U22A20551), and the National Natural Science Foundation of China Excellent Youth Fund (32422072).  

About author:  Mei Gu, E-mail: gumei1626@126.com; #Correspondence Qi Zhang, E-mail: zhangqi01@caas.cn; Peiwu Li, E-mail: peiwuli@oilcrops.cn

Cite this article: 

Mei Gu, Can Liu, Xiaofeng Yue, Du Wang, Xiaoqian Tang, Qi Zhang, Peiwu Li. 2026. Functional genes associated with the occurrence of mycotoxins produced by Aspergillus in foods. Journal of Integrative Agriculture, 25(2): 585-601.

Adams T H, Boylan M T, Timberlake W E. 1988. brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulansCell54, 353–362.

Adams T H, Wieser J K, Yu J H. 1998. Asexual sporulation in Aspergillus nidulansMicrobiology and Molecular Biology Reviews62, 35–54.

Andrianopoulos A, Timberlake W E. 1994. The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Molecular and Cellular Biology14, 2503–2515.

Aramayo R, Adams T, Timberlake W. 1989. A large cluster of highly expressed genes is dispensable for growth and development in Aspergillus nidulansGenetics122, 65–71.

Aramayo R, Timberlake W E. 1993. The Aspergillus nidulans yA gene is regulated by abaA. The EMBO Journal12, 2039–2048.

Bayram Ö, Biesemann C, Krappmann S, Galland P, Braus G H. 2008a. More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development. Molecular Biology of the Cell19, 3254–3262.

Bayram Ö, Feussner K, Dumkow M, Herrfurth C, Feussner I, Braus G H. 2016. Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development. Fungal Genetics and Biology87, 30–53.

Bayram Ö, Krappmann S, Ni M, Bok J W, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon N J, Keller N P, Yu J H. 2008b. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science320, 1504–1506.

Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R. 2005. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Current Biology15, 1833–1838.

Bok J W, Keller N P. 2004. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryotic Cell3, 527–535.

Bölker M. 1998. Sex and crime: Heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genetics and Biology25, 143–156.

Boylan M T, Mirabito P M, Willett C E, Zimmerman C R, Timberlake W E. 1987. Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulansMolecular and Cellular Biology, 7, 3113-3118.

Brown D, Yu J, Kelkar H, Fernandes M, Nesbitt T, Keller N, Adams T, Leonard T. 1996. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulansProceedings of the National Academy of Sciences of the United States of America93, 1418–1422.

Busby T M, Miller K Y, Miller B L. 1996. Suppression and enhancement of the Aspergillus nidulans medusa mutation by altered dosage of the bristle and stunted genes. Genetics143, 155–163.

Cai J, Zeng H, Shima Y, Hatabayashi H, Nakagawa H, Ito Y, Adachi Y, Nakajima H, Yabe K. 2008. Involvement of the nadA gene in formation of G-group aflatoxins in Aspergillus parasiticusFungal Genetics and Biology45, 1081–1093.

Calvo A M, Bok J, Brooks W, Keller N P. 2004. veA is required for toxin and sclerotial production in Aspergillus parasiticusApplied and Environmental Microbiology70, 4733–4739.

Calvo A M, Wilson R A, Bok J W, Keller N P. 2002. Relationship between secondary metabolism and fungal development. Microbiology and Molecular Biology Reviews66, 447–459.

Cary J W, Ehrlich K C, Bland J M, Montalbano B G. 2006. The aflatoxin biosynthesis cluster gene, aflX, encodes an oxidoreductase involved in conversion of versicolorin A to demethylsterigmatocystin. Applied and Environmental Microbiology72, 1096–1101.

Cary J W, Wright M, Bhatnagar D, Lee R, Chu F S. 1996. Molecular characterization of an Aspergillus parasiticus dehydrogenase gene, norA, located on the aflatoxin biosynthesis gene cluster. Applied and Environmental Microbiology62, 360–366.

Chang P K. 2003. The Aspergillus parasiticus protein AFLJ interacts with the aflatoxin pathway-specific regulator AFLR. Molecular Genetics and Genomics268, 711–719.

Chang P K, Cary J W, Yu J, Bhatnagar D, Cleveland T E. 1995. The Aspergillus parasiticus polyketide synthase gene pksA, a homolog of Aspergillus nidulans wA, is required for aflatoxin B1 biosynthesis. Molecular and General GeneticsMGG248, 270–277.

Chang P K, Scharfenstein L L, Ehrlich K C, Wei Q, Bhatnagar D, Ingber B F. 2012a. Effects of laeA deletion on Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production. Fungal Biology116, 298–307.

Chang P K, Scharfenstein L L, Li R W, Arroyo-Manzanares N, De Saeger S, Di Mavungu J D. 2017. Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites. Fungal Genetics and Biology104, 29–37.

Chang P K, Scharfenstein L L, Mack B, Ehrlich K C. 2012b. Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis. Applied and Environmental Microbiology78, 7557–7563.

Chang P K, Yabe K, Yu J. 2004a. The Aspergillus parasiticus estA-encoded esterase converts versiconal hemiacetal acetate to versiconal and versiconol acetate to versiconol in aflatoxin biosynthesis. Applied and Environmental Microbiology70, 3593–3599.

Chang P K, Yu J, Ehrlich K C, Boue S M, Montalbano B G, Bhatnagar D, Cleveland T E. 2000. adhA in Aspergillus parasiticus is involved in conversion of 5′-hydroxyaverantin to averufin. Applied and Environmental Microbiology66, 4715–4719.

Chang P K, Yu J, Yu J H. 2004b. aflT, a MFS transporter-encoding gene located in the aflatoxin gene cluster, does not have a significant role in aflatoxin secretion. Fungal Genetics and Biology41, 911–920.

Chang Y C, Timberlake W E. 1993. Identification of Aspergillus brlA response elements (BREs) by genetic selection in yeast. Genetics133, 29–38.

Clutterbuck A. 1972. Absence of laccase from yellow-spored mutants of Aspergillus nidulansMicrobiology70, 423–435.

Crespo-Sempere A, Marin S, Sanchis V, Ramos A. 2013. VeA and LaeA transcriptional factors regulate ochratoxin A biosynthesis in Aspergillus carbonariusInternational Journal of Food Microbiology166, 479–486.

Deepika V, Murali T, Satyamoorthy K. 2016. Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: A review. Microbiological Research182, 125–140.

Du W, Obrian G, Payne G. 2007. Function and regulation of aflJ in the accumulation of aflatoxin early pathway intermediate in Aspergillus flavusFood Additives and Contaminants24, 1043–1050.

Duran R M, Cary J W, Calvo A M. 2007. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Applied Microbiology and Biotechnology73, 1158–1168.

Ehrlich K, Montalbano B, Cary J. 1999. Binding of the C6-zinc cluster protein, AFLR, to the promoters of aflatoxin pathway biosynthesis genes in Aspergillus parasiticusGene230, 249–257.

Ehrlich K C. 2009. Predicted roles of the uncharacterized clustered genes in aflatoxin biosynthesis. Toxins1, 37–58.

Ehrlich K C, Chang P K, Scharfenstein Jr L L, Cary J W, Crawford J M, Townsend C A. 2010a. Absence of the aflatoxin biosynthesis gene, norA, allows accumulation of deoxyaflatoxin B1 in Aspergillus flavus cultures. FEMS Microbiology Letters305, 65–70.

Ehrlich K C, Chang P K, Yu J, Cotty P J. 2004. Aflatoxin biosynthesis cluster gene cypA is required for G aflatoxin formation. Applied and Environmental Microbiology70, 6518–6524.

Ehrlich K C, Li P, Scharfenstein L, Chang P K. 2010b. HypC, the anthrone oxidase involved in aflatoxin biosynthesis. Applied and Environmental Microbiology76, 3374–3377.

Ehrlich K C, Mack B M, Wei Q, Li P, Roze L V, Dazzo F, Cary J W, Bhatnagar D, Linz J E. 2012. Association with AflR in endosomes reveals new functions for AflJ in aflatoxin biosynthesis. Toxins4, 1582–1600.

Ehrlich K C, Montalbano B, Boué S M, Bhatnagar D. 2005. An aflatoxin biosynthesis cluster gene encodes a novel oxidase required for conversion of versicolorin A to sterigmatocystin. Applied and Environmental Microbiology71, 8963–8965.

Ehrlich K C, Scharfenstein Jr L L, Montalbano B G, Chang P K. 2008. Are the genes nadA and norB involved in formation of aflatoxin G1? International Journal of Molecular Sciences9, 1717–1729.

Etxebeste O, HerreroGarcía E, AraújoBazán L, RodríguezUrra A B, Garzia A, Ugalde U, Espeso E A. 2009. The bZIPtype transcription factor FlbB regulates distinct morphogenetic stages of colony formation in Aspergillus nidulansMolecular Microbiology73, 775–789.

Etxebeste O, Ni M, Garzia A, Kwon N J, Fischer R, Yu J H, Espeso E A, Ugalde U. 2008. Basic-zipper-type transcription factor FlbB controls asexual development in Aspergillus nidulansEukaryotic Cell7, 38–48.

Fischer R, Kües U. 2006. Asexual sporulation in mycelial fungi. In: GrowthDifferentiation and Sexuality. Springer, Berlin Heidelberg, pp. 263–292.

Froehlich A C, Liu Y, Loros J J, Dunlap J C. 2002. White Collar–1, a circadian blue light photoreceptor, binding to the frequency promoter. Science297, 815–819.

Fu J, Gu M, Yan H, Zhang M, Xie H, Yue X, Zhang Q, Li P. 2023. Protein biomarker for early diagnosis of microbial toxin contamination: Using Aspergillus flavus as an example. Food Frontiers4, 2013–2023.

Garzia A, Etxebeste O, HerreroGarcia E, Fischer R, Espeso E A, Ugalde U. 2009. Aspergillus nidulans FlbE is an upstream developmental activator of conidiation functionally associated with the putative transcription factor FlbB. Molecular Microbiology71, 172–184.

Garzia A, Etxebeste O, HerreroGarcía E, Ugalde U, Espeso E A. 2010. The concerted action of bZip and cMyb transcription factors FlbB and FlbD induces brlA expression and asexual development in Aspergillus nidulansMolecular Microbiology75, 1314–1324.

Guzmán-de-Peña D, Aguirre J, Ruiz-Herrera J. 1998. Correlation between the regulation of sterigmatocystin biosynthesis and asexual and sexual sporulation in Emericella nidulansAntonie van Leeuwenhoek73, 199–205.

Han K H, Han K Y, Kim M S, Lee D B, Kim J H, Chae S K, Chae K S, Han D M. 2003. Regulation of nsdD expression in Aspergillus nidulansJournal of Microbiology41, 259–261.

Han K H, Han K Y, Yu J H, Chae K S, Jahng K Y, Han D M. 2001. The nsdD gene encodes a putative GATAtype transcription factor necessary for sexual development of Aspergillus nidulans. Molecular Microbiology41, 299–309.

Han K H, Kim J H, Moon H, Kim S, Lee S S, Han D M, Jahng K Y, Chae K S. 2008. The Aspergillus nidulans esdC (early sexual development) gene is necessary for sexual development and is controlled by veA and a heterotrimeric G protein. Fungal Genetics and Biology45, 310–318.

Haque M A, Wang Y, Shen Z, Li X, Saleemi M K, He C. 2020. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microbial Pathogenesis142, 104095.

Hardie D G, Hawley S A, Scott J W. 2006. AMPactivated protein kinase - development of the energy sensor concept. The Journal of Physiology574, 7–15.

He Q, Cheng P, Yang Y, Wang L, Gardner K H, Liu Y. 2002. White collar-1, a DNA binding transcription factor and a light sensor. Science297, 840–843.

Henry K M, Townsend C A. 2005. Ordering the reductive and cytochrome P450 oxidative steps in demethylsterigmatocystin formation yields general insights into the biosynthesis of aflatoxin and related fungal metabolites. Journal of the American Chemical Society127, 3724–3733.

Holmes R A. 2008. Characterization of an aflatoxin biosynthetic gene and resistance in maize seeds to Aspergillus flavus. Ph D thesis, North Carolina State University, America.

Jia M, Liao X, Fang L, Jia B, Liu M, Li D, Zhou L, Kong W. 2021. Recent advances on immunosensors for mycotoxins in foods and other commodities. TrAC Trends in Analytical Chemistry136, 116193.

Kale S P, Milde L, Trapp M K, Frisvad J C, Keller N P, Bok J W. 2008. Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavusFungal Genetics and Biology45, 1422–1429.

Kato N, Brooks W, Calvo A M. 2003. The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryotic Cell2, 1178–1186.

Kelkar H S, Skloss T W, Haw J F, Keller N P, Adams T H. 1997. Aspergillus nidulans stcL encodes a putative cytochrome P450 monooxygenase required for bisfuran desaturation during aflatoxin/sterigmatocystin biosynthesis. Journal of Biological Chemistry272, 1589–1594.

Keller N P, Brown D, Butchko R, Fernandes M, Kelkar H, Nesbitt C, Segner S, Bhatnagar D, Cleveland T, Adams T. 1995a. A conserved polyketide mycotoxin gene cluster in Aspergillus nidulansMolecular Approaches to Food Safety Issues Involving Toxic Microorganisms18, 263–277.

Keller N P, Kantz N J, Adams T H. 1994. Aspergillus nidulans verA is required for production of the mycotoxin sterigmatocystin. Applied and Environmental Microbiology60, 1444–1450.

Keller N P, Segner S, Bhatnagar D, Adams T H. 1995b. stcS, a putative P450 monooxygenase, is required for the conversion of versicolorin A to sterigmatocystin in Aspergillus nidulansApplied and Environmental Microbiology61, 3628–3632.

Kim H R, Chae K S, Han K H, Han D M. 2009. The nsdC gene encoding a putative C2H2-type transcription factor is a key activator of sexual development in Aspergillus nidulansGenetics182, 771–783.

Kim H S, Han K Y, Kim K J, Han D M, Jahng K Y, Chae K S. 2002. The veA gene activates sexual development in Aspergillus nidulansFungal Genetics and Biology37, 72–80.

Kim M J, Lee M K, Pham H Q, Gu M J, Zhu B, Son S H, Hahn D, Shin J H, Yu J H, Park H S. 2020. The velvet regulator VosA governs survival and secondary metabolism of sexual spores in Aspergillus nidulansGenes11, 103.

Krappmann S, Bayram O Z R, Braus G H. 2005. Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryotic Cell4, 1298–1307.

Kwon N J, Shin K S, Yu J H. 2010a. Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulansFungal Genetics and Biology47, 981–993.

Kwon N J, Garzia A, Espeso E A, Ugalde U, Yu J H. 2010b. FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulansMolecular Microbiology77, 1203–1219.

Law D J, Timberlake W E. 1980. Developmental regulation of laccase levels in Aspergillus nidulans. Journal of Bacteriology144, 509–517.

Lee B N, Adams T. 1996. FluG and flbA function interdependently to initiate conidiophore development in Aspergillus nidulans through brlA beta activation. The EMBO Journal15, 299–309.

Lee B N, Adams T H. 1994. Overexpression of fIbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brIA and premature initiation of development. Molecular Microbiology14, 323–334.

Lengeler K B, Davidson R C, D’souza C, Harashima T, Shen W C, Wang P, Pan X, Waugh M, Heitman J. 2000. Signal transduction cascades regulating fungal development and virulence. Microbiology and Molecular Biology Reviews64, 746–785.

Liang M, Cai X, Gao Y, Yan H, Fu J, Tang X, Zhang Q, Li P. 2022. A versatile nanozyme integrated colorimetric and photothermal lateral flow immunoassay for highly sensitive and reliable Aspergillus flavus detection. Biosensors and Bioelectronics213, 114435.

MacPherson S, Larochelle M, Turcotte B. 2006. A fungal family of transcriptional regulators: The zinc cluster proteins. Microbiology and Molecular Biology Reviews70, 583–604.

Mah J H, Yu J H. 2006. Upstream and downstream regulation of asexual development in Aspergillus fumigatusEukaryotic Cell5, 1585–1595.

Marshall M A, Timberlake W E. 1991. Aspergillus nidulans wetA activates spore-specific gene expression. Molecular and Cellular Biology11, 55–62.

Mayorga M E, Timberlake W. 1990. Isolation and molecular characterization of the Aspergillus nidulans wA gene. Genetics126, 73–79.

Mayorga M E, Timberlake W E. 1992. The developmentally regulated Aspergillus nidulans wA gene encodes a polypeptide homologous to polyketide and fatty acid synthases. Molecular & General GeneticsMGG235, 205–212.

Meyers D M, Obrian G, Du W, Bhatnagar D, Payne G. 1998. Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin. Applied and Environmental Microbiology64, 3713–3717.

Miller K Y, Toennis T M, Adams T H, Miller B L. 1991. Isolation and transcriptional characterization of a morphological modifier: The Aspergillus nidulans stunted (stuA) gene. Molecular and General Genetics: MGG227, 285–292.

Mirabito P M, Adams T H, Timberlake W E. 1989. Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell57, 859–868.

Mooney J L, Yager L N. 1990. Light is required for conidiation in Aspergillus nidulansGenes & Development4, 1473–1482.

Morita H, Hatamoto O, Masuda T, Sato T, Takeuchi M. 2007. Function analysis of steA homolog in Aspergillus oryzae. Fungal Genetics and Biology44, 330–338.

Morris A J, Malbon C C. 1999. Physiological regulation of G protein-linked signaling. Physiological Reviews79, 1373–1430.

Ni M, Yu J H. 2007. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulansPLoS ONE2, e970.

O’Hara E B, Timberlake W. 1989. Molecular characterization of the Aspergillus nidulans yA locus. Genetics121, 249–254.

Park H S, Nam T Y, Han K H, Kim S C, Yu J H. 2014. VelC positively controls sexual development in Aspergillus nidulansPLoS ONE9, e89883.

Park H S, Ni M, Jeong K C, Kim Y H, Yu J H. 2012. The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulansPLoS ONE7, e45935.

Payne G, Brown M. 1998. Genetics and physiology of aflatoxin biosynthesis. Annual Review of Phytopathology36, 329–362.

Pontecorvo G, Roper J, Chemmons L, MacDonald K, Bufton A. 1953. The genetics of Aspergillus nidulansAdvances in Genetics5, 141–238.

Prade R A, Timberlake W E. 1993. The Aspergillus nidulans brlA regulatory locus consists of overlapping transcription units that are individually required for conidiophore development. The EMBO Journal12, 2439–2447.

Prieto R, Woloshuk C. 1997. ord1, an oxidoreductase gene responsible for conversion of O-methylsterigmatocystin to aflatoxin in Aspergillus flavusApplied and Environmental Microbiology63, 1661–1666.

Purschwitz J, Müller S, Kastner C, Schöser M, Haas H, Espeso E A, Atoui A, Calvo A M, Fischer R. 2008. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulansCurrent Biology18, 255–259.

Rodrigues I, Naehrer K. 2012. A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins4, 663–675.

Röhrig J, Kastner C, Fischer R. 2013. Light inhibits spore germination through phytochrome in Aspergillus nidulansCurrent Genetics59, 55–62.

Roze L V, Hong S Y, Linz J E. 2013. Aflatoxin biosynthesis: Current frontiers. Annual Review of Food Science and Technology4, 293–311.

Sakuno E, Wen Y, Hatabayashi H, Arai H, Aoki C, Yabe K, Nakajima H. 2005. Aspergillus parasiticus cyclase catalyzes two dehydration steps in aflatoxin biosynthesis. Applied and Environmental Microbiology71, 2999–3006.

Sakuno E, Yabe K, Nakajima H. 2003. Involvement of two cytosolic enzymes and a novel intermediate, 5´-oxoaverantin, in the pathway from 5´-hydroxyaverantin to averufin in aflatoxin biosynthesis. Applied and Environmental Microbiology69, 6418–6426.

Sarikaya Bayram Ö, Bayram Ö, Valerius O, Park H S, Irniger S, Gerke J, Ni M, Han K H, Yu J H, Braus G H. 2010. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genetics6, e1001226.

Seo J A, Guan Y, Yu J H. 2003. Suppressor mutations bypass the requirement of fluG for asexual sporulation and sterigmatocystin production in Aspergillus nidulansGenetics165, 1083–1093.

Seo J A, Guan Y, Yu J H. 2006. FluG-dependent asexual development in Aspergillus nidulans occurs via derepression. Genetics172, 1535–1544.

Sewall T C, Mims C W, Timberlake W E. 1990. abaA controls phialide differentiation in Aspergillus nidulansThe Plant Cell2, 731–739.

Sheppard D C, Doedt T, Chiang L Y, Kim H S, Chen D, Nierman W C, Filler S G. 2005. The Aspergillus fumigatus StuA protein governs the up-regulation of a discrete transcriptional program during the acquisition of developmental competence. Molecular Biology of the Cell16, 5866–5879.

Shimizu K, Keller N P. 2001. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulansGenetics157, 591–600.

Streit E, Naehrer K, Rodrigues I, Schatzmayr G. 2013. Mycotoxin occurrence in feed and feed raw materials worldwide: Longterm analysis with special focus on Europe and Asia. Journal of the Science of Food and Agriculture93, 2892–2899.

Stringer M, Dean R, Sewall T, Timberlake W. 1991. Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes & Development5, 1161–1171.

Tao L, Yu J H. 2011. AbaA and WetA govern distinct stages of Aspergillus fumigatus development. Microbiology157, 313–326.

Tilburn J, Sarkar S, Widdick D, Espeso E, Orejas M, Mungroo J, Penalva M, Arst Jr H. 1995. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acidand alkalineexpressed genes by ambient pH. The EMBO Journal14, 779–790.

Vallim M A, Miller K Y, Miller B L. 2000. Aspergillus SteA (sterile12like) is a homeodomainC2/H2Zn+ 2 finger transcription factor required for sexual reproduction. Molecular Microbiology36, 290–301.

Varga J, Frisvad J C, Samson R. 2011. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Studies in Mycology69, 57–80.

Vienken K, Fischer R. 2006. The Zn(II) 2Cys6 putative transcription factor NosA controls fruiting body formation in Aspergillus nidulansMolecular Microbiology61, 544–554.

Vienken K, Scherer M, Fischer R. 2005. The Zn(II) 2Cys6 putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under low-carbon conditions and in submersed culture. Genetics169, 619–630.

Weaver A C, Adams N, Yiannikouris A. 2020. Invited Review: Use of technology to assess and monitor multimycotoxin and emerging mycotoxin challenges in feedstuffs. Applied Animal Science36, 19–25.

Wen Y, Hatabayashi H, Arai H, Kitamoto H K, Yabe K. 2005. Function of the cypX and moxY genes in aflatoxin biosynthesis in Aspergillus parasiticusApplied and Environmental Microbiology71, 3192–3198.

Wieser J, Adams T H. 1995. flbD encodes a Myb-like DNA-binding protein that coordinates initiation of Aspergillus nidulans conidiophore development. Genes & Development9, 491–502.

Wieser J, Lee B N, Fondon J W, Adams T H. 1994. Genetic requirements for initiating asexual development in Aspergillus nidulansCurrent Genetics27, 62–69.

Wieser J, Yu J H, Adams T H. 1997. Dominant mutations affecting both sporulation and sterigmatocystin biosynthesis in Aspergillus nidulansCurrent Genetics32, 218–224.

Wu J, Miller B L. 1997. Aspergillus asexual reproduction and sexual reproduction are differentially affected by transcriptional and translational mechanisms regulating stunted gene expression. Molecular and Cellular Biology17, 6191-6201.

Xiao P, Shin K S, Wang T, Yu J H. 2010. Aspergillus fumigatus flbB encodes two basic leucine zipper domain (bZIP) proteins required for proper asexual development and gliotoxin production. Eukaryotic Cell9, 1711–1723.

Xie T, Misumi J, Aoki K, Zhao W, Liu S. 2000. Absence of p53-mediated G1 arrest with induction of MDM2 in sterigmatocystin-treated cells. International Journal of Oncology17, 737–779.

Yabe K, Ando Y, Hashimoto J, Hamasaki T. 1989. Two distinct O-methyltransferases in aflatoxin biosynthesis. Applied and Environmental Microbiology55, 2172–2177.

Yabe K, Hamasaki T. 1993. Stereochemistry during aflatoxin biosynthesis: Cyclase reaction in the conversion of versiconal to versicolorin B and racemization of versiconal hemiacetal acetate. Applied and Environmental Microbiology59, 2493–2500.

Yan H, Fu J, Tang X, Wang D, Zhang Q, Li P. 2022. Sensitivity enhancement of paper-based sandwich immunosensor via nanobody immobilization instead of IgG antibody, taking aflatoxingenetic fungi as an analyte example. Sensors and Actuators (B: Chemical), 373, 132760.

Yu J, Cary J, Bhatnagar D, Cleveland T, Keller N, Chu F. 1993. Cloning and characterization of a cDNA from Aspergillus parasiticus encoding an O-methyltransferase involved in aflatoxin biosynthesis. Applied and Environmental Microbiology59, 3564–3571.

Yu J, Chang P K, Bhatnagar D, Cleveland T E. 2003. Cloning and functional expression of an esterase gene in Aspergillus parasiticusMycopathologia156, 227–234.

Yu J, Chang P K, Cary J W, Bhatnagar D, Cleveland T E. 1997. avnA, a gene encoding a cytochrome P450 monooxygenase, is involved in the conversion of averantin to averufin in aflatoxin biosynthesis in Aspergillus parasiticusApplied and Environmental Microbiology63, 1349–1356.

Yu J, Chang P K, Ehrlich K C, Cary J W, Bhatnagar D, Cleveland T E, Payne G A, Linz J E, Woloshuk C P, Bennett J W. 2004. Clustered pathway genes in aflatoxin biosynthesis. Applied and Environmental Microbiology70, 1253–1262.

Yu J, Chang P K, Ehrlich K C, Cary J W, Montalbano B, Dyer J M, Bhatnagar D, Cleveland T E. 1998. Characterization of the critical amino acids of an Aspergillus parasiticus cytochrome P–450 monooxygenase encoded by ordA that is involved in the biosynthesis of aflatoxins B1, G1, B2, and G2. Applied and Environmental Microbiology64, 4834–4841.

Yu J, Chang P K, Payne G A, Cary J W, Bhatnagar D, Cleveland T E. 1995. Comparison of the omtA genes encoding O-methyltransferases involved in aflatoxin biosynthesis from Aspergillus parasiticus and A. flavusGene163, 121–125.

Yu J, Woloshuk C P, Bhatnagar D, Cleveland T E. 2000. Cloning and characterization of avfA and omtB genes involved in aflatoxin biosynthesis in three Aspergillus species. Gene248, 157–167.

Yu J H, Butchko R A, Fernandes M, Keller N P, Leonard T J, Adams T H. 1996a. Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavusCurrent Genetics29, 549–555.

Yu J H, Keller N. 2005. Regulation of secondary metabolism in filamentous fungi. Annual Review of Phytopathology43, 437–458.

Yu J H, Rosén S, Adams T H. 1999. Extragenic suppressors of loss-of-function mutations in the Aspergillus FlbA regulator of G-protein signaling domain protein. Genetics151, 97–105.

Yu J H, Wieser J, Adams T. 1996b. The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. The EMBO Journal15, 5184–5190.

Zhang L, Dou X W, Zhang C, Logrieco A F, Yang M H. 2018. A review of current methods for analysis of mycotoxins in herbal medicines. Toxins10, 65.

Zhou R, Linz J E. 1999. Enzymatic function of the Nor-1 protein in aflatoxin biosynthesis in Aspergillus parasiticusApplied and Environmental Microbiology65, 5639–5641.

[1] Peng Xu, Mengdie Jiang, Imran Khan, Muhammad Shaaban, Hongtao Wu, Barthelemy Harerimana, Ronggui Hu. Regulatory potential of soil available carbon, nitrogen, and functional genes on N2O emissions in two upland plantation systems[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2792-2806.
[2] Song Wan, Yongxin Lin, Hangwei Hu, Milin Deng, Jianbo Fan, Jizheng He. Excessive manure application stimulates nitrogen cycling but only weakly promotes crop yields in an acidic Ultisol: Results from a 20-year field experiment[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2434-2445.
[3] Jing Zhang, Zhaochen Wu, Shuo Li, He Huang, Suning Liu, Weimin Liu, Xiaoming Zhao, Jianzhen Zhang.

Development and formation of wing cuticle based on transcriptomic analysis in Locusta migratoria during metamorphosis [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1285-1299.

[4] Min Xu, Zhao Gao, Dalong Li, Chen Zhang, Yuqi Zhang, Qian He, Yingbin Qi, He Zhang, Jingbin Jiang, Xiangyang Xu, Tingting Zhao.

Functional prediction of tomato PLATZ family members and functional verification of SlPLATZ17 [J]. >Journal of Integrative Agriculture, 2024, 23(1): 141-154.

No Suggested Reading articles found!