|
Ahmad N, Khan M R, Shah S H, Zia M A, Hussain I, Muhammad A, Ali G M. 2020. An efficient and reproducible tissue culture procedure for callus induction and multiple shoots regeneration in groundnut (Arachis hypogaea L.). Journal of Animal and Plant Sciences, 30, 1540–1547.
Aina O, Quesenberry K, Gallo M. 2012a. In vitro induction of tetraploids in Arachis paraguariensis. Plant Cell Tissue and Organ Culture, 111, 231–238.
Aina O, Quesenberry K, Gallo M. 2012b. Thidiazuron-induced tissue culture regeneration from quartered-seed explants of Arachis paraguariensis. Crop Science, 52, 1076–1083.
Aina O O, Quesenberry K H, Gallo M. 2015. Culture vessel and auxin treatments affect in vitro rooting and ex vitro survival of six Arachis paraguariensis genotypes. Scientia Horticulturae, 183, 167–171.
Baker C M, Wetzstein H Y. 1998. Leaflet development, induction time, and medium influence somatic embryogenesis in peanut (Arachis hypogaea L.). Plant Cell Reports, 17, 925–929.
Banavath J N, Chakradhar T, Pandit V, Konduru S, Guduru K K, Akila C S, Podha S, Puli C O R. 2018. Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.). Frontiers in Chemistry, 6, 34.
Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K S, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araújo A C G, et al. 2016. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 48, 438−446.
Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, et al. 2019. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics, 51, 877–884.
Biswas S, Wahl N J, Thomson M J, Cason J M, McCutchen B F, Septiningsih E M. 2022. Optimization of protoplast isolation and transformation for a pilot study of genome editing in peanut by targeting the allergen gene Arah2. International Journal of Molecular Sciences, 23, 837.
Carvalho M A, Quesenberry K H, Gallo M. 2010. Comparative assessment of variation in the USA Arachis pintoi (Krap. and Greg.) germplasm collection using RAPD profiling and tissue culture regeneration ability. Plant Systematics and Evolution, 288, 245–251.
Chen M, Yang Q, Wang T, Chen N, Pan L, Chi X, Yang Z, Wang M, Yu S. 2015. Agrobacterium-mediated genetic transformation of peanut and the efficient recovery of transgenic plants. Canadian Journal of Plant Science, 95, 735–744.
Chen X, Lu Q, Liu H, Zhang J, Hong Y, Lan H, Li H, Wang J, Liu H, Li S, Pandey M K, Zhang Z, Zhou G, Yu J, Zhang G, Yuan J, Li X, Wen S, Meng F, et al. 2019. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Molecular Plant, 12, 920–934.
Cheng M, Jarret R L, Li Z, Xing A, Demski J W. 1996. Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens. Plant Cell Reports, 15, 653–657.
Chengalrayan K, Mhaske V B, Hazra S. 1998. Genotypic control of peanut somatic embryogenesis. Plant Cell Reports, 17, 522–525.
Chu Y, Bhattacharya A, Wu C, Knoll J E, Ozias-Akins P. 2013. Improvement of peanut (Arachis hypogaea L.) transformation efficiency and determination of transgene copy number by relative quantitative real-time PCR. In Vitro Cellular & Developmental Biology (Plant), 49, 266–275.
Clemente T E, Robertson D, Isleib T G, Beute M K, Weissinger A K. 1992. Evaluation of peanut (Arachis hypogaea L.) leaflets from mature zygotic embryos as recipient tissue for biolostic gene transfer. Transgenic Research, 1, 275–284.
Deng X Y, Wei Z M, An H L. 2001. Transgenic peanut plants obtained by particle bombardment via somatic embryogenesis regeneration system. Cell Research, 11, 156–160.
Dolce N R, Faloci M M, Gonzalez A M. 2018. In vitro plant regeneration and cryopreservation of Arachis glabrata (Fabaceae) using leaflet explants. In Vitro Cellular & Developmental Biology (Plant), 54, 133–144.
Egnin M, Mora A, Prakash C S. 1998. Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.). In Vitro Cellular & Developmental Biology (Plant), 34, 310–318.
Fang L, Yang T, Medina-Bolivar F. 2020. Production of prenylated stilbenoids in hairy root cultures of peanut (Arachis hypogaea) and its wild relatives A. ipaensis and A. duranensis via an optimized elicitation procedure. Molecules, 25, 509.
Fontana L, Mroginski L A, Rey H Y. 2009. Organogenesis and plant regeneration of Arachis villosa Benth. (Leguminosae) through leaf culture. Biocell, 33, 179–186.
Franklin C I, Shorrosh K M, Trieu A N, Cassidy B G, Nelson R S. 1993. Stable transformation of peanut callus via Agrobacterium-mediated DNA transfer. Transgenic Research, 2, 321–324.
Gagliardi R F, Pacheco G P, Valls J F M, Mansur E. 2002. Germplasm preservation of wild Arachis species through culture of shoot apices and axillary buds from in vitro plants. Biologia Plantarum, 45, 353–357.
Gill R, Ozias-Akins P. 1999. Thidiazuron-induced highly morphogenic callus and high frequency regeneration of fertile peanut (Arachis hypogaea L.) plants. In Vitro Cellular & Developmental Biology (Plant), 35, 445–450.
Guimarães L A, Pereira B M, Araujo A C G, Guimarães P M, Brasileiro A C M. 2017. Ex vitro hairy root induction in detached peanut leaves for plant–nematode interaction studies. Plant Methods, 13, 25.
Han H W, Yu S T, Wang Z W, Yang Z, Jiang C J, Wang X Z, Sun X S, Wang C T. 2023. In planta genetic transformation to produce CRISPRed high-oleic peanut. Plant Growth Regulation, 101, 443–451.
Hassan M, Akram Z, Ali S, Ali G, Zafar Y, Shah Z, Alghabari F. 2016. Whisker-mediated transformation of peanut with chitinase gene enhances resistance to leaf spot disease. Crop Breeding and Applied Biotechnology, 16, 108–114.
Hsieh Y F, Jain M, Wang J, Gallo M. 2017. Direct organogenesis from cotyledonary node explants suitable for Agrobacterium-mediated transformation in peanut (Arachis hypogaea L.). Plant Cell Tissue and Organ Culture, 128, 161–175.
Huai D, Wu J, Xue X, Hu M, Zhi C, Pandey M K, Liu N, Huang L, Bai D, Yan L, Chen Y, Wang X, Kang Y, Wang Z, Jiang H, Lei Y, Varshney R K, Liao B. 2023. Red fluorescence protein (DsRed2) promotes the screening efficiency in peanut genetic transformation. Frontiers in Plant Science, 14, 1123644.
Joshi M V, Sahasrabudhe N A, Hazra S. 2003. Responses of peanut somatic embryos to thidiazuron. Biologia Plantarum, 46, 187–192.
Klein T M, Wolf E D, Wu R, Sanford J C. 1987. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature, 327, 70–73.
Krishna G, Singh B K, Kim E K, Morya V K, Ramteke P W. 2015. Progress in genetic engineering of peanut (Arachis hypogaea L.) - A review. Plant Biotechnology Journal, 13, 147–162.
Lacorte C, Mansur E, Timmerman B, Cordeiro A R. 1991. Gene transfer into peanut (Arachis hypogaea L.) by Agrobacterium tumefaciens. Plant Cell Reports, 10, 354–357.
Lamboro A, Han X, Yang S, Li X, Yao D, Song B, Zhang J. 2022. Combination of 6-benzylaminopurine and thidiazuron promotes highly efficient shoot regeneration from cotyledonary node of mature peanut (Arachis hypogaea L.) cultivars. Phyton-International Journal of Experimental Botany, 91, 2619–2631.
Lamboro A, Song B, Songnan Y, Han X, Mingguo H, Li X, Yao D, Zhang J. 2021. Genetic engineering and genome editing techniques in peanut plants. Plant Science Today, 8, 528–534.
Li A, Zhou M, Liao G, Li X, Wang A, Xiao D, He L, Zhan J. 2023. CRISPR/Cas9 gene editing in peanut by Agrobacterium tumefaciens mediated pollen tube transformation. Plant Cell Tissue and Organ Culture, 155, 883–892.
Li L, Li X, Yang C, Li L. 2023. Peanut AhmTERF1 regulates root growth by modulating mitochondrial abundance. Genes, 14, 209.
Li Z, Jarret R L, Pittman R N, Dunbar K B, Dernski J W. 1993. Efficient plant regeneration from protoplasts of Arachis paraguariensis Chod. et Hassl. using a nurse culture method. Plant Cell Tissue and Organ Culture, 34, 83–90.
Liao G, Luo S, Li X, Li A, Mo Y, Wang A, Xiao D, He L F, Zhan J. 2023. Identification and functional characterization of REGULATORY PARTICLE NON-ATPASE 1a-like (AhRPN1a-like) in peanuts during aluminum-induced programmed cell death. Journal of Plant Physiology, 289, 154079.
Liu S, Su L, Liu S, Zeng X, Zheng D, Hong L, Li L. 2016. Agrobacterium rhizogenes-mediated transformation of Arachis hypogaea: An efficient tool for functional study of genes. Biotechnology & Biotechnological Equipment, 30, 869–878.
Liu X, Su L, Li L, Zhang Z, Li X, Liang Q, Li L. 2023. Transcriptome profiling reveals characteristics of hairy root and the role of AhGLK1 in response to drought stress and post-drought recovery in peanut. BMC Genomics, 24, 119.
Luo L, Wan Q, Zhang K, Zhang X, Guo R, Wang C, Zheng C, Liu F, Ding Z, Wan Y. 2021. AhABI4s negatively regulate salt-stress response in peanut. Frontiers in Plant Science, 12, 741641.
Mallikarjuna G, Rao T S R B, Kirti P B. 2016. Genetic enginnering for peanut improvement: Current status and prospects. Plant Cell Tissue and Organ Culture, 125, 399–416.
McKently A H. 1995. Effect of genotype on somatic embryogenesis from axes of mature peanut embryos. Plant Cell Tissue and Organ Culture, 42, 251–254.
Mroginski E, Rey H Y, Gonzalez A M, Mroginski L A. 2004. Thidiazuron promotes in vitro plant regeneration of Arachis correntina (Leguminosae) via organogenesis. Journal of Plant Growth Regulation, 23, 129–134.
Murch S J, Victor J M P, Krishnaraj S K, Saxena P K. 1999. The role of proline in thidiazuron-induced somatic embryogenesis of peanut. In Vitro Cellular & Developmental Biology (Plant), 35, 102–105.
Muthusamy A, Vasanth K, Sivasankari D, Chandrasekar B R, Jayabalan N. 2007. Effects of mutagens on somatic embryogenesis and plant regeneration in groundnut. Biologia Plantarum, 51, 430–435.
Neelakandan A K, Subedi B, Traore S M, Binagwa P, Wright D A, He G. 2022a. Base editing in peanut using CRISPR/nCas9. Frontiers in Genome Editing, 4, 901444.
Neelakandan A K, Wright D A, Traore S M, Chen X, Spalding M H, He G. 2022b. CRISPR/Cas9 based site-specific modification of FAD2 cis-regulatory motifs in peanut (Arachis hypogaea L). Frontiers in Genetics, 13, 849961.
Neelakandan A K, Wright D A, Traore S M, Ma X, Subedi B, Veeramasu S, Spalding M H, He G. 2022c. Application of CRISPR/Cas9 system for efficient gene editing in peanut. Plants, 11, 1361.
Niu C, Akasaka-Kennedy Y, Faustinelli P, Joshi M, Rajasekaran K, Yang H, Chu Y, Cary J, Ozias-Akins P. 2009. Antifungal activity in transgenic peanut (Arachis hypogaea L.) conferred by a nonheme chloroperoxidase gene. Peanut Science, 36, 126–132.
Ozias-Akins P, Schnall J A, Anderson W F, Singsit C, Clemente T E, Adang M J, Weissinger A K. 1993. Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Science, 93, 185–194.
Pacheco G, Gagliardi R F, Carneiro L A, Callado C H, Valls J F M, Mansur E. 2007. The role of BAP in somatic embryogenesis induction from seed explants of Arachis species from Sections Erectoides and Procumbentes. Plant Cell Tissue and Organ Culture, 88, 121–126.
Pacheco G, Gagliardi R F, Carneiro L A, Valls J F M, Mansur E. 2008. Plant regeneration in Arachis stenosperma Krapov. and W. C. Gregory from roots and calluses derived from leaflets of in vitro plants. In Vitro Cellular & Developmental Biology (Plant), 44, 14–17.
Palanivel S, Parvathi S, Jayabalan N. 2002. Callus induction and plantlet regeneration from mature cotyledonaury segments of groundnut (Arachis hypogaea L.). Journal of Plant Biology, 45, 22–27.
Pestana M C, Lacorte C, de Freitas V G, de Oliveira D E, Mansur E. 1999. In vitro regeneration of peanut (Arachis hypogaea L.) through organogenesis: Effect of culture temperature and silver nitrate. In Vitro Cellular & Developmental Biology (Plant), 35, 214–216.
Pholjad A, Pongtongkam P, Arananant J, Poeaim A. 2020. In vitro propagation from nodal segments of Arachis glabrata cultivar florigraze. International Journal of Agricultural Technology, 16, 1175–1184.
Raul B, Sinharoy S. 2022. An improvised ahiry root ransformation ethod for efficient gene silencing in roots and nodules of Arachis hypogaea. In: Mysore K S, Senthil-Kumar M, eds., Methods in Molecular Biology. Humana, New York, NY. pp. 303–316.
Rey H Y, Mroginski L A. 2006. Somatic embryogenesis and plant regeneration in diploid and triploid Arachis pintoi. Biologia Plantarum, 50, 152–155.
Rey H Y, Scocchi A M, Gonzalez A M, Mroginski L A. 2000. Plant regeneration in Arachis pintoi (Leguminosae) through leaf culture. Plant Cell Reports, 19, 856–862.
Sellars R M, Southward G M, Phillips G C. 1990. Adventitious somatic embryogenesis from cultured immature zygotic embryos of peanut and soybean. Crop Science, 30, 408–414.
Senthil-Kumar M, Govind G, Kang L, Mysore K S, Udayakumar M. 2007. Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-induced genes by virus-induced gene silencing. Planta, 225, 523–539.
Shi L, Li X, Xue L, Zhang J, Huang B, Sun Z, Zhang Z, Dai X, Han S, Dong W, Zhang X. 2023. Creation of herbicide-resistance in allotetraploid peanut using CRISPR/Cas9-meditated cytosine base-editing. Plant Biotechnology Journal, 21, 1923–1925.
Song H, Huang Y, Ding L, Duan Z, Zhang J. 2023. Arachis species: High-quality forage crops-nutritional properties and breeding strategies to expand their utilization and feeding value. Grassland Research, 2, 212–219.
de Sousa-Machado I B, Felippe T, Garcia R, Pacheco G, Moreira D, Mansur E. 2018. Total phenolics, resveratrol content and antioxidant activity of seeds and calluses of pinto peanut (Arachis pintoi Krapov. & W.C. Greg.). Plant Cell Tissue and Organ Culture, 134, 491–502.
Srinivasan T, Kumar K R R, Kirti P B. 2010. Establishment of efficient and rapid regeneration system for some diploid wild species of Arachis. Plant Cell Tissue and Organ Culture, 101, 303–309.
Tang Y, Huang J, Ji H, Pan L, Hu C, Qiu X, Zhu H, Sui J, Wang J, Qiao L. 2022. Identification of AhFatB genes through genome-wide analysis and knockout of AhFatB reduces the content of saturated fatty acids in peanut (Arichis hypogaea L.). Plant Science, 319, 111247.
Venkatachalam P, Geetha N, Jayabalan N, Sita L G. 1998. Agrobacterium-mediated genetic transformation of groundnut (Arachis hypogaea L.): An assessment of factors affecting regeneration of transgenic plants. Journal of Plant Research, 111, 565–572.
Venkatachalam P, Kavi Kishor P B, Geetha N, Thangavelu M, Jayabalan N. 1999. A rapid protocol for somatic embryogenesis from immature leaflets of groundnut (Arachis hypogaea L.). In Vitro Cellular & Developmental Biology-Plant, 35, 409–412.
Vidoz M L, Klusacek P, Rey H Y, Mroginski L A. 2006. In vitro plant regeneration of Arachis correntina (Leguminosae) through somatic embryogenesis and organogenesis. Plant Cell Tissue and Organ Culture, 86, 111–115.
Vidoz M L, Rey H Y, Gonzalez A M, Mroginski L A. 2004. Somatic embryogenesis and plant regeneration through leaf culture in Arachis glabrata (Leguminosae). Acta Physiologiae Plantarum, 26, 59–66.
Yang H, Luo L, Li Y, Li H, Zhang X, Zhang K, Zhu S, Li X, Li Y, Wan Y, Liu F. 2023. Fine mapping of qAHPS07 and functional studies of AhRUVBL2 controlling pod size in peanut (Arachis hypogaea L.). Plant Biotechnology Journal, 21, 1765–1798.
Yang H, Nairn J O E, Ozias-Akins P. 2003. Transformation of peanut using a modified bacterial mercuric ion reductase gene driven by an actin promoter from Arabidopsis thaliana. Journal of Plant Physiology, 160, 945–952.
Yin D, Ji C, Ma X, Li H, Zhang W, Li S, Liu F, Zhao K, Li F, Li K, Ning L, He J, Wang Y, Zhao F, Xie Y, Zheng H, Zhang X, Zhang Y, Zhang J. 2018. Genome of an allotetraploid wild peanut Arachis monticola: A de novo assembly. GigaScience, 7, giy066.
Yuan M, Zhu J K, Gong L, He L, Lee C, Han S, Chen C, He G. 2019. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnology, 19, 24.
Zhao K, Wang L, Qiu D, Cao Z, Wang K, Li Z, Wang X, Wang J, Ma Q, Cao D, Qi Y, Zhao K, Gong F, Li Z, Ren R, Ma X, Zhang X, Yu F, Yin D. 2023. PSW1, an LRR receptor kinase, regulates pod sizein peanut. Plant Biotechnology Journal, 21, 2113–2124.
Zhao Y, Ma J, Li M, Deng L, Li G, Xia H, Zhao S, Hou L, Li P, Ma C, Yuan M, Ren L, Gu J, Guo B, Zhao C, Wang X. 2020. Whole-genome resequencing-based QTL-seq identified AhTc1 gene encoding a R2R3-MYB transcription factor controlling peanut purple testa colour. Plant Biotechnology Journal, 18, 96–105.
Zhou M, Luo J, Xiao D, Wang A, He L, Zhan J. 2023. An efficient method for the production of transgenic peanut plants by pollen tube transformation mediated by Agrobacterium tumefaciens. Plant Cell Tissue and Organ Culture, 152, 207–214.
Zhu H, Jiang Y, Guo Y, Huang J, Zhou M, Tang Y, Sui J, Wang J, Qiao L. 2021. A novel salt inducible WRKY transcription factor gene, AhWRKY75, confers salt tolerance in transgenic peanut. Plant Physiology and Biochemistry, 160, 175–183.
Zhuang W, Chen H, Yang M, Wang J, Pandey M K, Zhang C, Chang W C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C N, Wang J, Deng Y, Wang D, Khan A W, Yang Q, Cai T, et al. 2019. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics, 51, 865–876.
|