Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (2): 577-584    DOI: 10.1016/j.jia.2024.06.010
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Current status of the genetic transformation of Arachis plants

Hui Song#, Meiran Li, Zhenquan Duan

College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
 Highlights 
Functional validation of key peanut genes is impeded by the lack of an efficient genetic transformation system.  
Visible phenotypic markers serve as ideal tools for confirming transgenic events in peanut.  
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

花生是重要的植物油、蛋白质和饲用作物。花生隶属于落花生属植物,该属包括9个区组83种植物。多数落花生属植物为野生种,可以作为饲草和草坪草。另外,花生区组的野生种还能够为栽培花生提供基因资源用于提高其遗传多样性。至今,已鉴定到多个落花生属植物的重要基因资源。但是,却缺少基于分子水平的遗传改良,研究者归咎为落花生属植物遗传转化体系不成熟。然而,早在30年前就已有落花生属植物遗传转化的报道。因此,在落花生属植物遗传转化体系完备和候选基因未能验证之间存在强烈的矛盾。本综述对已有落花生属植物的体外再生体系和遗传转化体系进行了总结,期望为研究者提供参考。



Abstract  

Peanuts (Arachis hypogaea) are important sources of vegetable oil, protein, and forage.  The genus Arachis comprises nine intrageneric taxonomic sections encompassing 84 species.  Most Arachis species are wild plants that serve widely as forage and turfgrass.  Furthermore, wild Arachis species provide valuable gene resources for broadening the genetic diversity of cultivated peanuts.  To date, several key genes have been identified through the use of recombinant inbred lines derived from interspecific crosses within Arachis.  Despite this progress, the application of genetic engineering to enhance peanut traits remains limited.  This limitation arises primarily from the absence of a robust and reliable genetic transformation protocol for Arachis species.  Nevertheless, evidence indicates that successful genetic transformation of Arachis plants was first reported approximately 30 years ago.  Thus, a notable discrepancy exists between early reports of transformation success and the ongoing challenges in stably transferring candidate genes into Arachis genotypes.  This review summarizes existing methods for regeneration and genetic transformation in Arachis, aiming to advance understanding of transgenic technologies applicable to this genus.

Keywords:  Arachis       CRISPR/Cas9        genetic transformation        in vitro regeneration  
Received: 20 February 2024   Accepted: 06 May 2024 Online: 27 June 2024  
Fund: This study was funded by the Key R&D Program of Shandong Province, China (2024LZGC035) and the Start-up Foundation for High Talents of Qingdao Agricultural University, China (665/1120012).
About author:  #Correspondence Hui Song, E-mail: biosonghui@outlook.com

Cite this article: 

Hui Song, Meiran Li, Zhenquan Duan. 2026. Current status of the genetic transformation of Arachis plants. Journal of Integrative Agriculture, 25(2): 577-584.

Ahmad N, Khan M R, Shah S H, Zia M A, Hussain I, Muhammad A, Ali G M. 2020. An efficient and reproducible tissue culture procedure for callus induction and multiple shoots regeneration in groundnut (Arachis hypogaea L.). Journal of Animal and Plant Sciences30, 1540–1547.

Aina O, Quesenberry K, Gallo M. 2012a. In vitro induction of tetraploids in Arachis paraguariensisPlant Cell Tissue and Organ Culture111, 231–238.

Aina O, Quesenberry K, Gallo M. 2012b. Thidiazuron-induced tissue culture regeneration from quartered-seed explants of Arachis paraguariensisCrop Science52, 1076–1083.

Aina O O, Quesenberry K H, Gallo M. 2015. Culture vessel and auxin treatments affect in vitro rooting and ex vitro survival of six Arachis paraguariensis genotypes. Scientia Horticulturae183, 167–171.

Baker C M, Wetzstein H Y. 1998. Leaflet development, induction time, and medium influence somatic embryogenesis in peanut (Arachis hypogaea L.). Plant Cell Reports17, 925–929.

Banavath J N, Chakradhar T, Pandit V, Konduru S, Guduru K K, Akila C S, Podha S, Puli C O R. 2018. Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.). Frontiers in Chemistry6, 34.

Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K S, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araújo A C G, et al. 2016. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics48, 438−446.

Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, et al. 2019. The genome sequence of segmental allotetraploid peanut Arachis hypogaeaNature Genetics51, 877–884.

Biswas S, Wahl N J, Thomson M J, Cason J M, McCutchen B F, Septiningsih E M. 2022. Optimization of protoplast isolation and transformation for a pilot study of genome editing in peanut by targeting the allergen gene Arah2International Journal of Molecular Sciences23, 837.

Carvalho M A, Quesenberry K H, Gallo M. 2010. Comparative assessment of variation in the USA Arachis pintoi (Krap. and Greg.) germplasm collection using RAPD profiling and tissue culture regeneration ability. Plant Systematics and Evolution288, 245–251.

Chen M, Yang Q, Wang T, Chen N, Pan L, Chi X, Yang Z, Wang M, Yu S. 2015. Agrobacterium-mediated genetic transformation of peanut and the efficient recovery of transgenic plants. Canadian Journal of Plant Science95, 735–744.

Chen X, Lu Q, Liu H, Zhang J, Hong Y, Lan H, Li H, Wang J, Liu H, Li S, Pandey M K, Zhang Z, Zhou G, Yu J, Zhang G, Yuan J, Li X, Wen S, Meng F, et al. 2019. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Molecular Plant12, 920–934.

Cheng M, Jarret R L, Li Z, Xing A, Demski J W. 1996. Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciensPlant Cell Reports15, 653–657.

Chengalrayan K, Mhaske V B, Hazra S. 1998. Genotypic control of peanut somatic embryogenesis. Plant Cell Reports17, 522–525.

Chu Y, Bhattacharya A, Wu C, Knoll J E, Ozias-Akins P. 2013. Improvement of peanut (Arachis hypogaea L.) transformation efficiency and determination of transgene copy number by relative quantitative real-time PCR. In Vitro Cellular & Developmental Biology (Plant), 49, 266–275.

Clemente T E, Robertson D, Isleib T G, Beute M K, Weissinger A K. 1992. Evaluation of peanut (Arachis hypogaea L.) leaflets from mature zygotic embryos as recipient tissue for biolostic gene transfer. Transgenic Research1, 275–284.

Deng X Y, Wei Z M, An H L. 2001. Transgenic peanut plants obtained by particle bombardment via somatic embryogenesis regeneration system. Cell Research11, 156–160.

Dolce N R, Faloci M M, Gonzalez A M. 2018. In vitro plant regeneration and cryopreservation of Arachis glabrata (Fabaceae) using leaflet explants. In Vitro Cellular & Developmental Biology (Plant), 54, 133–144.

Egnin M, Mora A, Prakash C S. 1998. Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.). In Vitro Cellular & Developmental Biology (Plant), 34, 310–318.

Fang L, Yang T, Medina-Bolivar F. 2020. Production of prenylated stilbenoids in hairy root cultures of peanut (Arachis hypogaea) and its wild relatives Aipaensis and Aduranensis via an optimized elicitation procedure. Molecules25, 509.

Fontana L, Mroginski L A, Rey H Y. 2009. Organogenesis and plant regeneration of Arachis villosa Benth. (Leguminosae) through leaf culture. Biocell33, 179–186.

Franklin C I, Shorrosh K M, Trieu A N, Cassidy B G, Nelson R S. 1993. Stable transformation of peanut callus via Agrobacterium-mediated DNA transfer. Transgenic Research2, 321–324.

Gagliardi R F, Pacheco G P, Valls J F M, Mansur E. 2002. Germplasm preservation of wild Arachis species through culture of shoot apices and axillary buds from in vitro plants. Biologia Plantarum45, 353–357.

Gill R, Ozias-Akins P. 1999. Thidiazuron-induced highly morphogenic callus and high frequency regeneration of fertile peanut (Arachis hypogaea L.) plants. In Vitro Cellular & Developmental Biology (Plant), 35, 445–450.

Guimarães L A, Pereira B M, Araujo A C G, Guimarães P M, Brasileiro A C M. 2017. Ex vitro hairy root induction in detached peanut leaves for plant–nematode interaction studies. Plant Methods13, 25.

Han H W, Yu S T, Wang Z W, Yang Z, Jiang C J, Wang X Z, Sun X S, Wang C T. 2023. In planta genetic transformation to produce CRISPRed high-oleic peanut. Plant Growth Regulation101, 443–451.

Hassan M, Akram Z, Ali S, Ali G, Zafar Y, Shah Z, Alghabari F. 2016. Whisker-mediated transformation of peanut with chitinase gene enhances resistance to leaf spot disease. Crop Breeding and Applied Biotechnology16, 108–114.

Hsieh Y F, Jain M, Wang J, Gallo M. 2017. Direct organogenesis from cotyledonary node explants suitable for Agrobacterium-mediated transformation in peanut (Arachis hypogaea L.). Plant Cell Tissue and Organ Culture128, 161–175.

Huai D, Wu J, Xue X, Hu M, Zhi C, Pandey M K, Liu N, Huang L, Bai D, Yan L, Chen Y, Wang X, Kang Y, Wang Z, Jiang H, Lei Y, Varshney R K, Liao B. 2023. Red fluorescence protein (DsRed2) promotes the screening efficiency in peanut genetic transformation. Frontiers in Plant Science14, 1123644.

Joshi M V, Sahasrabudhe N A, Hazra S. 2003. Responses of peanut somatic embryos to thidiazuron. Biologia Plantarum46, 187–192.

Klein T M, Wolf E D, Wu R, Sanford J C. 1987. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature327, 70–73.

Krishna G, Singh B K, Kim E K, Morya V K, Ramteke P W. 2015. Progress in genetic engineering of peanut (Arachis hypogaea L.) - A review. Plant Biotechnology Journal13, 147–162.

Lacorte C, Mansur E, Timmerman B, Cordeiro A R. 1991. Gene transfer into peanut (Arachis hypogaea L.) by Agrobacterium tumefaciensPlant Cell Reports10, 354–357.

Lamboro A, Han X, Yang S, Li X, Yao D, Song B, Zhang J. 2022. Combination of 6-benzylaminopurine and thidiazuron promotes highly efficient shoot regeneration from cotyledonary node of mature peanut (Arachis hypogaea L.) cultivars. Phyton-International Journal of Experimental Botany91, 2619–2631.

Lamboro A, Song B, Songnan Y, Han X, Mingguo H, Li X, Yao D, Zhang J. 2021. Genetic engineering and genome editing techniques in peanut plants. Plant Science Today8, 528–534.

Li A, Zhou M, Liao G, Li X, Wang A, Xiao D, He L, Zhan J. 2023. CRISPR/Cas9 gene editing in peanut by Agrobacterium tumefaciens mediated pollen tube transformation. Plant Cell Tissue and Organ Culture155, 883–892.

Li L, Li X, Yang C, Li L. 2023. Peanut AhmTERF1 regulates root growth by modulating mitochondrial abundance. Genes14, 209.

Li Z, Jarret R L, Pittman R N, Dunbar K B, Dernski J W. 1993. Efficient plant regeneration from protoplasts of Arachis paraguariensis Chod. et Hassl. using a nurse culture method. Plant Cell Tissue and Organ Culture34, 83–90.

Liao G, Luo S, Li X, Li A, Mo Y, Wang A, Xiao D, He L F, Zhan J. 2023. Identification and functional characterization of REGULATORY PARTICLE NON-ATPASE 1a-like (AhRPN1a-like) in peanuts during aluminum-induced programmed cell death. Journal of Plant Physiology289, 154079.

Liu S, Su L, Liu S, Zeng X, Zheng D, Hong L, Li L. 2016. Agrobacterium rhizogenes-mediated transformation of Arachis hypogaea: An efficient tool for functional study of genes. Biotechnology & Biotechnological Equipment30, 869–878.

Liu X, Su L, Li L, Zhang Z, Li X, Liang Q, Li L. 2023. Transcriptome profiling reveals characteristics of hairy root and the role of AhGLK1 in response to drought stress and post-drought recovery in peanut. BMC Genomics24, 119.

Luo L, Wan Q, Zhang K, Zhang X, Guo R, Wang C, Zheng C, Liu F, Ding Z, Wan Y. 2021. AhABI4s negatively regulate salt-stress response in peanut. Frontiers in Plant Science12, 741641.

Mallikarjuna G, Rao T S R B, Kirti P B. 2016. Genetic enginnering for peanut improvement: Current status and prospects. Plant Cell Tissue and Organ Culture125, 399–416.

McKently A H. 1995. Effect of genotype on somatic embryogenesis from axes of mature peanut embryos. Plant Cell Tissue and Organ Culture42, 251–254.

Mroginski E, Rey H Y, Gonzalez A M, Mroginski L A. 2004. Thidiazuron promotes in vitro plant regeneration of Arachis correntina (Leguminosae) via organogenesis. Journal of Plant Growth Regulation23, 129–134.

Murch S J, Victor J M P, Krishnaraj S K, Saxena P K. 1999. The role of proline in thidiazuron-induced somatic embryogenesis of peanut. In Vitro Cellular & Developmental Biology (Plant), 35, 102–105.

Muthusamy A, Vasanth K, Sivasankari D, Chandrasekar B R, Jayabalan N. 2007. Effects of mutagens on somatic embryogenesis and plant regeneration in groundnut. Biologia Plantarum51, 430–435.

Neelakandan A K, Subedi B, Traore S M, Binagwa P, Wright D A, He G. 2022a. Base editing in peanut using CRISPR/nCas9. Frontiers in Genome Editing4, 901444.

Neelakandan A K, Wright D A, Traore S M, Chen X, Spalding M H, He G. 2022b. CRISPR/Cas9 based site-specific modification of FAD2 cis-regulatory motifs in peanut (Arachis hypogaea L). Frontiers in Genetics13, 849961.

Neelakandan A K, Wright D A, Traore S M, Ma X, Subedi B, Veeramasu S, Spalding M H, He G. 2022c. Application of CRISPR/Cas9 system for efficient gene editing in peanut. Plants11, 1361.

Niu C, Akasaka-Kennedy Y, Faustinelli P, Joshi M, Rajasekaran K, Yang H, Chu Y, Cary J, Ozias-Akins P. 2009. Antifungal activity in transgenic peanut (Arachis hypogaea L.) conferred by a nonheme chloroperoxidase gene. Peanut Science36, 126–132.

Ozias-Akins P, Schnall J A, Anderson W F, Singsit C, Clemente T E, Adang M J, Weissinger A K. 1993. Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Science93, 185–194.

Pacheco G, Gagliardi R F, Carneiro L A, Callado C H, Valls J F M, Mansur E. 2007. The role of BAP in somatic embryogenesis induction from seed explants of Arachis species from Sections Erectoides and ProcumbentesPlant Cell Tissue and Organ Culture88, 121–126.

Pacheco G, Gagliardi R F, Carneiro L A, Valls J F M, Mansur E. 2008. Plant regeneration in Arachis stenosperma Krapov. and W. C. Gregory from roots and calluses derived from leaflets of in vitro plants. In Vitro Cellular & Developmental Biology (Plant), 44, 14–17.

Palanivel S, Parvathi S, Jayabalan N. 2002. Callus induction and plantlet regeneration from mature cotyledonaury segments of groundnut (Arachis hypogaea L.). Journal of Plant Biology45, 22–27.

Pestana M C, Lacorte C, de Freitas V G, de Oliveira D E, Mansur E. 1999. In vitro regeneration of peanut (Arachis hypogaea L.) through organogenesis: Effect of culture temperature and silver nitrate. In Vitro Cellular & Developmental Biology (Plant), 35, 214–216.

Pholjad A, Pongtongkam P, Arananant J, Poeaim A. 2020. In vitro propagation from nodal segments of Arachis glabrata cultivar florigraze. International Journal of Agricultural Technology16, 1175–1184.

Raul B, Sinharoy S. 2022. An improvised ahiry root ransformation ethod for efficient gene silencing in roots and nodules of Arachis hypogaea. In: Mysore K S, Senthil-Kumar M, eds., Methods in Molecular Biology. Humana, New York, NY. pp. 303–316.

Rey H Y, Mroginski L A. 2006. Somatic embryogenesis and plant regeneration in diploid and triploid Arachis pintoiBiologia Plantarum50, 152–155.

Rey H Y, Scocchi A M, Gonzalez A M, Mroginski L A. 2000. Plant regeneration in Arachis pintoi (Leguminosae) through leaf culture. Plant Cell Reports19, 856–862.

Sellars R M, Southward G M, Phillips G C. 1990. Adventitious somatic embryogenesis from cultured immature zygotic embryos of peanut and soybean. Crop Science30, 408–414.

Senthil-Kumar M, Govind G, Kang L, Mysore K S, Udayakumar M. 2007. Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-induced genes by virus-induced gene silencing. Planta225, 523–539.

Shi L, Li X, Xue L, Zhang J, Huang B, Sun Z, Zhang Z, Dai X, Han S, Dong W, Zhang X. 2023. Creation of herbicide-resistance in allotetraploid peanut using CRISPR/Cas9-meditated cytosine base-editing. Plant Biotechnology Journal21, 1923–1925.

Song H, Huang Y, Ding L, Duan Z, Zhang J. 2023. Arachis species: High-quality forage crops-nutritional properties and breeding strategies to expand their utilization and feeding value. Grassland Research2, 212–219.

de Sousa-Machado I B, Felippe T, Garcia R, Pacheco G, Moreira D, Mansur E. 2018. Total phenolics, resveratrol content and antioxidant activity of seeds and calluses of pinto peanut (Arachis pintoi Krapov. & W.C. Greg.). Plant Cell Tissue and Organ Culture134, 491–502.

Srinivasan T, Kumar K R R, Kirti P B. 2010. Establishment of efficient and rapid regeneration system for some diploid wild species of ArachisPlant Cell Tissue and Organ Culture101, 303–309.

Tang Y, Huang J, Ji H, Pan L, Hu C, Qiu X, Zhu H, Sui J, Wang J, Qiao L. 2022. Identification of AhFatB genes through genome-wide analysis and knockout of AhFatB reduces the content of saturated fatty acids in peanut (Arichis hypogaea L.). Plant Science319, 111247.

Venkatachalam P, Geetha N, Jayabalan N, Sita L G. 1998. Agrobacterium-mediated genetic transformation of groundnut (Arachis hypogaea L.): An assessment of factors affecting regeneration of transgenic plants. Journal of Plant Research111, 565–572.

Venkatachalam P, Kavi Kishor P B, Geetha N, Thangavelu M, Jayabalan N. 1999. A rapid protocol for somatic embryogenesis from immature leaflets of groundnut (Arachis hypogaea L.). In Vitro Cellular & Developmental Biology-Plant35, 409–412.

Vidoz M L, Klusacek P, Rey H Y, Mroginski L A. 2006. In vitro plant regeneration of Arachis correntina (Leguminosae) through somatic embryogenesis and organogenesis. Plant Cell Tissue and Organ Culture86, 111–115.

Vidoz M L, Rey H Y, Gonzalez A M, Mroginski L A. 2004. Somatic embryogenesis and plant regeneration through leaf culture in Arachis glabrata (Leguminosae). Acta Physiologiae Plantarum26, 59–66.

Yang H, Luo L, Li Y, Li H, Zhang X, Zhang K, Zhu S, Li X, Li Y, Wan Y, Liu F. 2023. Fine mapping of qAHPS07 and functional studies of AhRUVBL2 controlling pod size in peanut (Arachis hypogaea L.). Plant Biotechnology Journal21, 1765–1798.

Yang H, Nairn J O E, Ozias-Akins P. 2003. Transformation of peanut using a modified bacterial mercuric ion reductase gene driven by an actin promoter from Arabidopsis thalianaJournal of Plant Physiology160, 945–952.

Yin D, Ji C, Ma X, Li H, Zhang W, Li S, Liu F, Zhao K, Li F, Li K, Ning L, He J, Wang Y, Zhao F, Xie Y, Zheng H, Zhang X, Zhang Y, Zhang J. 2018. Genome of an allotetraploid wild peanut Arachis monticola: A de novo assembly. GigaScience7, giy066.

Yuan M, Zhu J K, Gong L, He L, Lee C, Han S, Chen C, He G. 2019. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnology19, 24.

Zhao K, Wang L, Qiu D, Cao Z, Wang K, Li Z, Wang X, Wang J, Ma Q, Cao D, Qi Y, Zhao K, Gong F, Li Z, Ren R, Ma X, Zhang X, Yu F, Yin D. 2023. PSW1, an LRR receptor kinase, regulates pod sizein peanut. Plant Biotechnology Journal21, 2113–2124.

Zhao Y, Ma J, Li M, Deng L, Li G, Xia H, Zhao S, Hou L, Li P, Ma C, Yuan M, Ren L, Gu J, Guo B, Zhao C, Wang X. 2020. Whole-genome resequencing-based QTL-seq identified AhTc1 gene encoding a R2R3-MYB transcription factor controlling peanut purple testa colour. Plant Biotechnology Journal18, 96–105.

Zhou M, Luo J, Xiao D, Wang A, He L, Zhan J. 2023. An efficient method for the production of transgenic peanut plants by pollen tube transformation mediated by Agrobacterium tumefaciensPlant Cell Tissue and Organ Culture152, 207–214.

Zhu H, Jiang Y, Guo Y, Huang J, Zhou M, Tang Y, Sui J, Wang J, Qiao L. 2021. A novel salt inducible WRKY transcription factor gene, AhWRKY75, confers salt tolerance in transgenic peanut. Plant Physiology and Biochemistry160, 175–183.

Zhuang W, Chen H, Yang M, Wang J, Pandey M K, Zhang C, Chang W C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C N, Wang J, Deng Y, Wang D, Khan A W, Yang Q, Cai T, et al. 2019. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics51, 865–876.

[1] Jiali Ying, Yan Wang, Liang Xu, Tiaojiao Qin, Kai Xia, Peng Zhang, Yinbo Ma, Keyun Zhang, Lun Wang, Junhui Dong, Lianxue Fan, Yuelin Zhu, Liwang Liu.

Establishing VIGS and CRISPR/Cas9 techniques to verify RsPDS function in radish [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1557-1567.

No Suggested Reading articles found!