Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (12): 4515-4527    DOI: 10.1016/j.jia.2025.04.008
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide association analysis locates FtAUR3 in Tartary buckwheat that contributes to enhance plant salt resistance

Xiang Lu1, 2*, Qian Zuo2*, Md. Nurul Huda2, Yaliang Shi2, Guangsheng Li2, Xiangru Wang2, Yawen Xiao2, Muhammad Khurshid3, Tanzim Jahan2, Namraj Dhami4, Dhurva Prasad Gauchan5, Md. Arfan Ali6, Jianping Cheng1, Yu Meng7, Jingjun Ruan1#, Meiliang Zhou2#

1 College of Agriculture, Guizhou University, Guiyang 550025, China

2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3 School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan

4 School of Health and Allied Sciences, Faculty of Health Sciences, Pokhara University, Kaski 33700 , Nepal

5 Department of Biotechnology, School of Science, Kathmandu University, Dhulikhel 45200, Nepal

6 Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh

7 Country College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding 071001, China

 Highlights 

Method of genome-wide association analysis (GWAS) with transcriptomic analysis enhances confidence in linking genetic loci to functional responses under stress.
Results of FtAUR3 could bridge reactive oxygen species (ROS) management with energy production under stress.
Identified SNP of FtAUR3 promoter can be useful for marker-assisted breeding.

 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
荞麦(Fagopyrum tataricum)是一种未充分利用的孤儿作物,具有重要的营养和药用价值,且对逆境有较好的耐受性。然而,这种环保作物对盐胁迫敏感,盐胁迫会导致水分流失、气孔关闭,影响光合作用和代谢,降低荞麦的产量和质量。因此,了解荞麦的盐胁迫耐受机制至关重要。在本研究中,我们通过全基因组关联分析(GWAS)确定了在第2号染色体上包含35个候选基因的位点,这个位点与荞麦的盐耐受性显著相关。转录组分析表明,丝氨酸/苏氨酸蛋白激酶 Aurora-3(FtAUR3) 家族基因在盐胁迫下上调表达。在 FtAUR3 启动子中单核苷酸的缺失会导致 FtAUR3 表达增加,从而增强荞麦对盐的耐受性。FtAUR3 在荞麦毛状根中的过表达导致了类黄酮的积累,包括芦丁和肉桂酸,并在盐胁迫下诱导了类黄酮生物合成基因 (如PALC4HF3HF3’H) 的表达。此外,过表达 FtAUR3 的拟南芥相较于野生型拟南芥增强了盐耐受基因 (SOS1AVP1等) 的表达,增强了植物对盐胁迫的耐受性。同时,在盐胁迫下,FtAUR3 显著提高了 ROS 通路成分的水平,包括超氧化物歧化酶、过氧化氢酶和过氧化物酶,进而改善植物的盐耐受性。另外,我们证明了 FtAUR3 与 ROS 通路中的关键酶 FtGAPB 相互作用,提出了 FtAUR3 参与 ROS 信号的潜在机制。综合这些结果,证实了 FtAUR3 在荞麦耐盐胁迫中可能发挥重要的积极作用。




Abstract  

Tartary buckwheat (Fagopyrum tataricum), an underutilized pseudocereal, possesses significant nutritional and pharmaceutical properties and demonstrates resistance to drought and nutrient deficiency.  However, this environmentally sustainable crop exhibits sensitivity to salt stress, which can induce water loss, stomatal closure, impair photosynthesis and metabolism, and diminish yield and quality of Tartary buckwheat.  Understanding the mechanisms of salt stress tolerance in buckwheat is therefore crucial.  This study identified a locus containing 35 candidate genes on chromosome 2 that shows significant association with salt tolerance of Tartary buckwheat through genome-wide association analysis (GWAS).  Transcriptome analysis demonstrated that the serine/threonine-protein kinase Aurora-3 (FtAUR3) family gene exhibited upregulation in response to salt stress.  A single nucleotide deletion in the FtAUR3 promoter results in elevated FtAUR3 expression and enhanced salt tolerance in Tartary buckwheat.  Overexpression of FtAUR3 in buckwheat hairy roots promotes the accumulation of flavonoids, including rutin and cinnamic acid, while inducing the expression of flavonoid biosynthesis genes, such as PAL, C4H, F3H, and F3´H, under salt stress.  Additionally, overexpression of FtAUR3 in Arabidopsis thaliana induced the expression of salt-resistant genes (salt-resistant genes (SOS1), AVP1, etc.) and enhanced salt tolerance compared to wild type plants.  Under salt stress, FtAUR3 significantly enhances the levels of reactive oxygen species pathway components, including superoxide dismutase, catalase, and peroxidase, thereby improving plant salt tolerance.  The study demonstrated that FtAUR3 interacts with the critical enzyme FtGAPB in the reactive oxygen species (ROS) pathway, suggesting a potential mechanism through which FtAUR3 contributes to ROS signaling.  These findings indicate that FtAUR3 plays a crucial positive role in Tartary buckwheat resistance against salt stress.

Keywords:  Fagopyrum tataricum       GWAS       aurora-3       salt stress       gairy roots       Arabidopsis thaliana  
Received: 20 January 2025   Accepted: 10 March 2025 Online: 03 April 2025  
Fund: 

This research was supported by the Asian Cooperation Fund Project (102125241610090000029), the National Key R&D Program of China (2019YFD1001300 and 2019YFD1001305), the Natural Science Foundation of Hebei Province, China (C2023204097) and the National Natural Science Foundation of China (31560578).

About author:  #Correspondence Meiliang Zhou, E-mail: zhoumeiliang@caas.cn; Jingjun Ruan, E-mail: jjruan@gzu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Xiang Lu, Qian Zuo, Md. Nurul Huda, Yaliang Shi, Guangsheng Li, Xiangru Wang, Yawen Xiao, Muhammad Khurshid, Tanzim Jahan, Namraj Dhami, Dhurva Prasad Gauchan, Md. Arfan Ali, Jianping Cheng, Yu Meng, Jingjun Ruan, Meiliang Zhou. 2025. Genome-wide association analysis locates FtAUR3 in Tartary buckwheat that contributes to enhance plant salt resistance. Journal of Integrative Agriculture, 24(12): 4515-4527.

Barragan V, Leidi E, Andres Z, Rubio L, De Luca A, Fernandez J, Cubero B, Pardo J 2012. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in ArabidopsisThe Plant Cell24, 1127–1142.

Cadavid I, Guzman F, De Oliveira-Busatto L, De Almeida R, Margis R. 2020. Transcriptional analyses of two soybean cultivars under salt stress. Molecular Biology Reports47, 2871–2888.

Chen L, Zhang B, Xu Z. 2008. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Research17, 121–132.

Choi W, Toyota M, Kim S, Hilleary R, Gilroy S. 2014. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proceedings of the National Academy of Sciences of the United States of America111, 6497–6502.

Chun H, Baek D, Cho H, Jung H, Jeong M, Jung W, Choi C, Lee S, Jin B, Park M, Kim H, Chung W, Lee S, Bohnert H, Bressan R, Yun D, Hong Y, Kim M. 2019. Metabolic adjustment of Arabidopsis root suspension cells during adaptation to salt stress and mitotic stress memory. Plant & Cell Physiology60, 612–625.

Clough S, Bent A. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thalianaThe Plant Journal16, 735–743.

Van Damme D, De Rybel B, Gudesblat G, Demidov D, Grunewald W, De Smet I, Houben A, Beeckman T, Russinova E. 2011. Arabidopsis alpha aurora kinases function in formative cell division plane orientation. The Plant Cell23, 4013–4024.

Evans M, Choi W, Gilroy S, Morris R. 2016. A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress. Plant Physiology171, 1771–1784.

Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M. 2011. Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signaling & Behavior, 6, 709–711.

Gupta B, Huang B. 2014. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics2014, 701596.

He C, Yan J, Shen G, Fu L, Holaday A, Auld D, Blumwald E, Zhang H. 2005. Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant & Cell Physiology46, 1848–1854.

He M, He Y, Zhang K, Lu X, Zhang X, Gao B, Fan Y, Zhao H, Jha R, Huda M N, Tang Y, Wang J, Yang W, Yan M, Cheng J, Ruan J, Dulloo E, Zhang Z, Georgiev M I, Chapman M A, et al. 2022. Comparison of buckwheat genomes reveals the genetic basis of metabolomic divergence and ecotype differentiation. The New Phytologist235, 1927–1943.

He Y, Zhang K, Li S, Lu X, Zhao H, Guan C, Huang X, Shi Y, Kang Z, Fan Y, Li W, Chen C, Li G, Long O, Chen Y, Hu M, Cheng J, Xu B, Chapman M A, Georgiev M I, Fernie A R, Zhou M. 2023. Multiomics analysis reveals the molecular mechanisms underlying virulence in Rhizoctonia and jasmonic acid-mediated resistance in Tartary buckwheat (Fagopyrum tataricum). Plant Cell35, 2773–2798.

Horie T, Kaneko T, Sugimoto G, Sasano S, Panda S K, Shibasaka M, Katsuhara M. 2011. Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots. Plant & Cell Physiology52, 663–675.

Ibrahimova U, Kumari P, Yadav S, Rastogi A, Antala M, Suleymanova Z, Zivcak M, Tahjib-Ul-Arif M, Hussain S, Abdelhamid M, Hajihashemi S, Yang X, Brestic M. 2021. Progress in understanding salt stress response in plants using biotechnological tools. Journal of Biotechnology329, 180–191.

Ji H, Pardo J M, Batelli G, Van Oosten M J, Bressan R A, Li X. 2013. The salt overly sensitive (SOS) pathway: Established and emerging roles. Molecular Plant6, 275–286.

Jiang C, Belfield E J, Cao Y, Smith J A, Harberd N P. 2013. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. The Plant Cell25, 3535–3552.

Joshi D C, Zhang K, Wang C, Chandora R, Khurshid M, Li J, He M, Georgiev M I, Zhou M. 2020. Strategic enhancement of genetic gain for nutraceutical development in buckwheat: A genomics-driven perspective. Biotechnology Advances39, 107479.

Julkowska M M, Testerink C. 2015. Tuning plant signaling and growth to survive salt. Trends in Plant Science20, 586–594.

Kang J, Yim S, Choi H, Kim A, Lee K P, Lopez-Molina L, Martinoia E, Lee Y. 2015. Abscisic acid transporters cooperate to control seed germination. Nature Communications6, 8113.

Komaki S, Takeuchi H, Hamamura Y, Heese M, Hashimoto T, Schnittger A. 2020. Functional analysis of the plant chromosomal passenger complex. Plant Physiology183, 1586–1599.

Kozgunova E, Suzuki T, Ito M, Higashiyama T, Kurihara D. 2016. Haspin has multiple functions in the plant cell division regulatory network. Plant & Cell Physiology57, 848–861.

Lai D, Huda Md N, Xiao Y, Jahan T, Li W H, Zhang K, Cheng J, Ruan J, Zhou M. 2025. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress. Journal of Integrative Agriculture24, 3334–3350.

Li M, Yeung J, Cherny S, Sham P. 2012. Evaluating the effective numbers of independent tests and significant P-value thresholds in commercial genotyping arrays and public imputation reference datasets. Human Genetics131, 747–756.

Li Q L, Li Z Y, Wang M M, Yan J W, Fang L. 2023. Phosphorylation of SiRAV1 at Ser31 regulates the SiCAT expression to enhance salt tolerance in Setaria italicaJournal of Integrative Agriculture22, 3638–3651.

Li X, Kim Y B, Kim Y, Zhao S, Kim H H, Chung E, Lee J H, Park S U. 2013. Differential stress-response expression of two flavonol synthase genes and accumulation of flavonols in Tartary buckwheat. Plant Physiology170, 1630–1636.

Liang W, Ma X, Wan P, Liu L. 2018. Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications495, 286–291.

Liao Y, Smyth G K, Shi W. 2014. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics30, 923–930.

Luthar Z, Golob A, Germ M, Vombergar B, Kreft I. 2021. Tartary buckwheat in human nutrition. Plants (Basel), 10, 700.

Ma W, Kim J K, Jia C, Yin F, Kim H J, Akram W, Hu X, Li X. 2019. Comparative transcriptome and metabolic profiling analysis of buckwheat (Fagopyrum Tataricum (L.) Gaertn.) under salinity stress. Metabolites9, 225.

Mansour M F, Hassan F S. 2022. How salt stress-responsive proteins regulate plant adaptation to saline conditions. Plant Molecular Biology108, 175–224.

Min M H, Khaing A A, Chu S H, Nawade B, Park Y J. 2024. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis. Journal of Integrative Agriculture23, 2525–2540.

Monihan S M, Ryu C H, Magness C A, Schumaker K S. 2019. Linking duplication of a calcium sensor to salt tolerance in Eutrema salsugineumPlant Physiology179, 1176–1192.

Morishita T, Kojima Y, Maruta T, Nishizawa-Yokoi A, Yabuta Y, Shigeoka S. 2009. Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high-light. Plant & Cell Physiology50, 2210–2222.

Nepal N, Yactayo-Chang J P, Gable R, Wilkie A, Martin J, Aniemena C L, Gaxiola R, Lorence A. 2020. Phenotypic characterization of Arabidopsis thaliana lines overexpressing AVP1 and MIOX4 in response to abiotic stresses. Applications in Plant Sciences8, e11384.

Panche A N, Diwan A D, Chandra S R. 2016. Flavonoids: An overview. Journal of Nutritional Science5, e47.

Park H J, Kim W Y, Yun D J. 2016. A new insight of salt stress signaling in plant. Molecules and Cells39, 447–459.

Quan R, Wang J, Yang D, Zhang H, Zhang Z, Huang R. 2017. EIN3 and SOS2 synergistically modulate plant salt tolerance. Scientific Reports7, 44637.

Razzaq A, Ali A, Safdar L B, Zafar M M, Rui Y, Shakeel A, Shaukat A, Ashraf M, Gong W, Yuan Y. 2020. Salt stress induces physiochemical alterations in rice grain composition and quality. Journal of Food Science85, 14–20.

Saddhe A A, Mishra A K, Kumar K. 2021. Molecular insights into the role of plant transporters in salt stress response. Physiologia Plantarum173, 1481–1494.

Shah A N, Tanveer M, Abbas A, Fahad S, Baloch M S, Ahmad M I, Saud S, Song Y. 2021. Targeting salt stress coping mechanisms for stress tolerance in Brassica: A research perspective. Plant Physiology and Biochemistry158, 53–64.

Shah F A, Ni J, Tang C, Chen X, Kan W, Wu L. 2021. Karrikinolide alleviates salt stress in wheat by regulating the redox and K+/Na+ homeostasis. Plant Physiology and Biochemistry167, 921–933.

Shi J, Fu X, Peng T, Huang X, Fan Q, Liu J. 2010. Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiology30, 914–922.

Shrivastava P, Kumar R. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences22, 123–131.

Takagi M, Sakamoto T, Suzuki R, Nemoto K, Obayashi T, Hirakawa T, Matsunaga T M, Kurihara D, Nariai Y, Urano T, Sawasaki T, Matsunaga S. 2016. Plant Aurora kinases interact with and phosphorylate transcription factors. Journal of Plant Research129, 1165–1178.

Teakle N L, Tyerman S D. 2010. Mechanisms of Cl transport contributing to salt tolerance. PlantCell & Environment33, 566–589.

Wang Z, Xiong L, Li W, Zhu J, Zhu J. 2011. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in ArabidopsisThe Plant Cell23, 1971–1984.

Winkel-Shirley B. 2002. Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology5, 218–223.

Wu H, Song X, Muhammad W A, Chen C, Zhang D, Guo W. 2024. Mining elite loci and candidate genes for root morphology-related traits at the seedling stage by genome-wide association studies in upland cotton (Gossypium hirsutum L.). Journal of Integrative Agriculture23, 3406–3418.

Yamaguchi T, Blumwald E. 2005. Developing salt-tolerant crop plants: Challenges and opportunities. Trends in Plant Science10, 615–620.

Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, Yuan X, Zhu M, Zhao S, Li X, Liu X. 2021. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. GenomicsProteomics & Bioinformatics19, 619–628.

Yin X, Xia Y, Xie Q, Cao Y, Wang Z, Hao G, Song J, Zhou Y, Jiang X. 2020. The protein kinase complex CBL10-CIPK8-SOS1 functions in Arabidopsis to regulate salt tolerance. Journal of Experimental Botany71, 1801–1814.

Yu W, Yu Y, Wang C, Zhang Z, Xue Z. 2021. Mechanism by which salt stress induces physiological responses and regulates tanshinone synthesis. Plant Physiology and Biochemistry164, 10–20.

Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. 2020. How plant hormones mediate salt stress responses. Trends in Plant Science25, 1117–1130.

Van Zelm E, Zhang Y, Testerink C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology71, 403–433.

Zhang K, He M, Fan Y, Zhao H, Gao B, Yang K, Li F, Tang Y, Gao Q, Lin T, Quinet M, Janovska D, Meglic V, Kwiatkowski J, Romanova O, Chrungoo N, Suzuki T, Luthar Z, Germ M, Woo S H, et al. 2021. Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biology22, 23.

Zhang L, Li X, Ma B, Gao Q, Du H, Han Y, Li Y, Cao Y, Qi M, Zhu Y, Lu H, Ma M, Liu L, Zhou J, Nan C, Qin Y, Wang J, Cui L, Liu H, Liang C, et al. 2017. The Tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Molecular Plant10, 1224–1237.

Zhang M, Liang X, Wang L, Cao Y, Song W, Shi J, Lai J, Jiang C. 2019. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nature Plants5, 1297–1308.

Zhang Z, Li Z, He F, Lv J, Xie B, Yi X, Li J, Li J, Song J, Pu Z, Ma J, Peng Y, Chen G, Wei Y, Zheng Y, Li W. 2023. Genome-wide association and linkage mapping strategies reveal the genetic loci and candidate genes of important agronomic traits in Sichuan wheat. Journal of Integrative Agriculture22, 3380–3393.

Zhou X, Wang S, Zhou Y. 2021. Study on the structure and digestibility of high amylose Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch-flavonoid prepared by different methods. Journal of Food Science86, 1463–1474.

Zou X, Liu L, Hu Z, Wang X, Zhu Y, Zhang J, Li X, Kang Z, Lin Y, Yin C. 2021. Salt-induced inhibition of rice seminal root growth is mediated by ethylene-jasmonate interaction. Journal of Experimental Botany72, 5656–5672.

[1] Yapeng Zhang, Wentao Cai, Qi Zhang, Qian Li, Yahui Wang, Ruiqi Peng, Haiqi Yin, Xin Hu, Zezhao Wang, Bo Zhu, Xue Gao, Yan Chen, Huijiang Gao, Lingyang Xu, Junya Li, Lupei Zha. Integrated analyses of genomic and transcriptomic data reveal candidate variants associated with carcass traits in Huaxi cattle[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3169-3184.
[2] Runnan Zhou, Sihui Wang, Peiyan Liu, Yifan Cui, Zhenbang Hu, Chunyan Liu, Zhanguo Zhang, Mingliang Yang, Xin Li, Xiaoxia Wu, Qingshan Chen, Ying Zhao. Genome-wide characterization of soybean malate dehydrogenase genes reveals a positive role for GmMDH2 in the salt stress response[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2492-2510.
[3] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[4] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[5] Zhian Dai, Rongwei Yuan, Xiangxia Yang, Hanxiao Xi, Ma Zhuo, Mi Wei. Salinity-responsive key endophytic bacteria in the propagules of Kandelia obovata enhance salt tolerance in rice[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1738-1753.
[6] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[7] Deyin Zhang, Xiaolong Li, Fadi Li, Xiaoxue Zhang, Yuan Zhao, Yukun Zhang, Zongwu Ma, Huibin Tian, Xiuxiu Weng, Weimin Wang. Genome-wide association study identifies novel loci associated with feed efficiency traits in Hu lambs[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1259-1269.
[8] Chang Liu, Lei Tian, Wenbo Yu, Yu Wang, Ziqing Yao, Yue Liu, Luomiao Yang, Chunjuan Liu, Xiaolong Shi, Tao Liu, Bingru Chen, Zhenguo Wang, Haiqiu Yu, Yufei Zhou. Natural variation in SbTEF1 contributes to salt tolerance in sorghum seedlings [J]. >Journal of Integrative Agriculture, 2025, 24(11): 4168-4181.
[9] Fuli Gao, Zidong Wang, Wankun Liu, Min Liu, Baoyi Wang, Yingjie Yang, Jiankun Song, Zhenhua Cui, Chenglin Liang, Dingli Li, Ran Wang, Jianlong Liu. Dehydrin PbDHN3 regulates ethylene synthesis and signal transduction to improve salt tolerance in pear[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3838-3850.
[10] Jiayue He, Yanhua Chen, Yanrong Hao, Dili Lai, Tanzim Jahan, Yaliang Shi, Hao Lin, Yuqi He, Md. Nurul Huda, Jianping Cheng, Kaixuan Zhang, Jinbo Li, Jingjun Ruan, Meiliang Zhou. Combining GWAS and RNA-seq approaches identifies the FtADH1 gene for drought resistance in Tartary buckwheat[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3739-3756.
[11] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[12] Yingzhen Wang, Ying Wu, Xinlei Wang, Wangmei Ren, Qinyao Chen, Sijia Zhang, Feng Zhang, Yunzhi Lin, Junyang Yue, Yongsheng Liu.

Genome wide association analysis identifies candidate genes for fruit quality and yield in Actinidia eriantha  [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1929-1939.

[13] Yongchao Hao, Fanmei Kong, Lili Wang, Yu Zhao, Mengyao Li, Naixiu Che, Shuang Li, Min Wang, Ming Hao, Xiaocun Zhang, Yan Zhao.

Genome-wide association study of grain micronutrient concentrations in bread wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1468-1480.

[14] Ping Xu, Hao Li, Haiyuan Li, Ge Zhao, Shengjie Dai, Xiaoyu Cui, Zhenning Liu, Lei Shi, Xiaohua Wang.

Genome-wide and candidate gene association studies identify BnPAP17 as conferring the utilization of organic phosphorus in oilseed rape [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1134-1149.

[15] Congcong Zhang, Han Wang, Guojie Nai, Lei Ma, Xu Lu, Haokai Yan, Meishuang Gong, Yuanyuan Li, Ying Lai, Zhihui Pu, Li Wei, Guiping Chen, Ping Sun, Baihong Chen, Shaoying Ma, Sheng Li. Nitrogen application regulates antioxidant capacity and flavonoid metabolism, especially quercetin, in grape seedlings under salt stress[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4074-4092.
No Suggested Reading articles found!