Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Natural variation in SbTEF1 contributes to salt tolerance in sorghum seedlings
Chang Liu1, Lei Tian1, Wenbo Yu1, Yu Wang1, Ziqing Yao1, Yue Liu2, Luomiao Yang3, Chunjuan Liu1, Xiaolong Shi1, Tao Liu4, Bingru Chen5, Zhenguo Wang6, Haiqiu Yu1, 7#, Yufei Zhou1#

1 College of Agriculture, Shenyang Agricultural University, Shenyang 110866, China

2 Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110866, China

3 College of Agriculture, Northeast Agricultural University, Harbin 150006, China

4 Institute of Sorghum Research, Baicheng Academy of Agricultural Science, Baicheng 137000, China 

5 Institute of Sorghum Research, Jilin Academy of Agricultural Science, Changchun 130033, China

6 Institute of Sorghum Research, Tongliao Agriculture and Animal Husbandry Sciences, Tongliao 028000, China

7 Liaoning Agricultural Vocational and Technical College, Yingkou 115009, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  盐胁迫是影响作物产量和品质的主要非生物胁迫因素。由于耐盐基因资源的匮乏,耐盐育种的进程受到了极大的限制。高粱是一种具有较强盐碱耐受性的作物,挖掘其耐盐基因显得尤为重要。本研究对186份核心高粱种质材料进行重测序,结合盐胁迫下相对根长及根鲜重表型进行全基因组关联分析结果显示,在多重耐盐表型共定位区间内共有8个候选基因,结合数据库注释及盐胁迫下基因表达结果,SbTEF1(一种编码转录延长因子蛋白的基因)被确定为耐盐候选基因。在此基础上,结合连锁不平衡分析、基因克隆、基因单倍型分析及等位基因效应分析,发现位于SbTEF1启动子区域的PAV284通过调节盐胁迫情况下基因表达影响高粱耐盐性。PAV284可作为分子标记为高粱种质耐盐改良高粱耐盐品种培育提供技术支撑

Abstract  Salt stress is a major constraint to crop productivity and quality.  The limited availability of salt-tolerant genes poses significant challenges to breeding programs aimed at enhancing salt tolerance. Sorghum displays a remarkable ability to withstand saline conditions; therefore, elucidating the genetic underpinnings of this trait is crucial.  This study entailed a comprehensive resequencing of 186 sorghum accessions to perform a genome-wide association study (GWAS) focusing on relative root length (RL) and root fresh weight (RFW) under salt stress conditions. We identified eight candidate genes within a co-localized region, among which SbTEF1—a gene encoding a transcription elongation factor protein—was deemed a potential candidate due to its annotation and expression pattern alterations under salt stress.  Haplotype analysis, gene cloning, linkage disequilibrium (LD) analysis, and allele effect analysis revealed that PAV284, located in the promoter region of SbTEF1, modulated gene expression under salt stress, which, in turn, influenced sorghum seedlings' salt tolerance.  PAV284 holds promise as a genetic marker for the selection of salt-tolerant germplasm via marker-assisted breeding, enhancing the development of salt-tolerant sorghum cultivars.
Keywords:  salt stress       GWAS              transcription elongation factor              sorghum (Sorghum       biocolor       L.)  
Online: 03 April 2024  

Cite this article: 

Chang Liu, Lei Tian, Wenbo Yu, Yu Wang, Ziqing Yao, Yue Liu, Luomiao Yang, Chunjuan Liu, Xiaolong Shi, Tao Liu, Bingru Chen, Zhenguo Wang, Haiqiu Yu, Yufei Zhou. 2024. Natural variation in SbTEF1 contributes to salt tolerance in sorghum seedlings. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.03.030

Bazakos C, Hanemian M, Trontin C, Jiménez-Gómez J M, Loudet O. 2017. New strategies and tools in quantitative genetics: How to go from the phenotype to the genotype. Annual Review of Plant Biology, 68, 435-455.

Cao Y, Zhang M, Liang X, Li F, Shi Y, Yang X, Jiang C. 2020. Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline-alkaline tolerance in maize. Nature Communications, 11, 186.

Cui D, Wu D, Somarathna Y, Xu C, Li S, Li P, Zhang H, Chen H, Zhao L. 2015. QTL mapping for salt tolerance based on snp markers at the seedling stage in maize (Zea mays L.). Euphytica, 203, 273-283.

Cui Y, Zhang F, Zhou Y. 2018. The application of multi-locus GWAS for the detection of salt-tolerance loci in rice. Frontiers in Plant Science, 9, 1464.

Do T D, Vuong T D, Dunn D, Clubb M, Valliyodan B, Patil G, Chen P, Xu D, Nguyen H T, Shannon J G. 2019. Identification of new loci for salt tolerance in soybean by high-resolution genome-wide association mapping. BMC Genomics, 20, 1-16.

Fan G, Xia X, Yao W, Cheng Z, Zhang X, Jiang J, Zhou B, Jiang T. 2022. Genome-wide identification and expression patterns of the F-box family in poplar under salt stress. International Journal of Molecular Sciences, 23, 10934.

Galvan-Ampudia C S, Testerink C. 2011. Salt stress signals shape the plant root. Current Opinion in Plant Biology, 14, 296-302.

Gao L, Jia S, Cao L, Ma Y, Wang J, Lan D, Guo G, Chai J, Bi C. 2022. An F-box protein from wheat, TaFBA-2A, negatively regulates JA biosynthesis and confers improved salt tolerance and increased JA responsiveness to transgenic rice plants. Plant Physiology and Biochemistry, 182, 227-239.

Gao Y, Ma J, Zheng J C, Chen J, Chen M, Zhou Y B, Fu J D, Xu Z S, Ma Y Z. 2019. The elongation factor GmEF4 is involved in the response to drought and salt tolerance in soybean. International Journal of Molecular Sciences, 20, 3001.

Jia Q, Xiao Z X, Wong F L, Sun S, Liang K J, Lam H M. 2017. Genome-wide analyses of the soybean F-box gene family in response to salt stress. International Journal of Molecular Sciences, 18, 818.

Jones D T. 1999. Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 292, 195-202.

Kimani W, Zhang L M, Wu X Y, Hao H Q, Jing H C. 2020. Genome-wide association study reveals that different pathways contribute to grain quality variation in sorghum (Sorghum bicolor). BMC Genomics, 21, 1-19.

Kumar V, Singh A, Mithra S A, Krishnamurthy S, Parida S K, Jain S, Tiwari K K, Kumar P, Rao A R, Sharma S. 2015. Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Research, 22, 133-145.

Li P, Yang X, Wang H, Pan T, Wang Y, Xu Y, Xu C, Yang Z. 2021. Genetic control of root plasticity in response to salt stress in maize. Theoretical and Applied Genetics, 134, 1475-1492.

Li X, Guo D, Xue M, Li G, Yan Q, Jiang H, Liu H, Chen J, Gao Y, Duan L. 2022. Genome-wide association study of salt tolerance at the seed germination stage in flax (Linum usitatissimum L.). Genes, 13, 486.

Liaqat A, Alfatih A, Jan S U, Sun L, Zhao P, Xiang C. 2023. Transcription elongation factor AtSPT4-2 positively modulates salt tolerance in Arabidopsis thaliana. BMC Plant Biology, 23, 49.

Lipka A E, Tian F, Wang Q, Peiffer J, Li M, Bradbury P J, Gore M A, Buckler E S, Zhang Z. 2012. GAPIT: Genome association and prediction integrated tool. Bioinformatics, 28, 2397-2399.

Luo M, Zhang Y, Chen K, Kong M, Song W, Lu B, Shi Y, Zhao Y, Zhao J. 2019. Mapping of quantitative trait loci for seedling salt tolerance in maize. Molecular Breeding, 39, 1-12.

Luo M, Zhang Y, Li J, Zhang P, Chen K, Song W, Wang X, Yang J, Lu X, Lu B. 2021. Molecular dissection of maize seedling salt tolerance using a genome‐wide association analysis method. Plant Biotechnology Journal, 19, 1937-1951.

Luo M, Zhao Y, Zhang R, Xing J, Duan M, Li J, Wang N, Wang W, Zhang S, Chen Z. 2017. Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. BMC Plant Biology, 17, 1-10.

Luo X, Wang B, Gao S, Zhang F, Terzaghi W, Dai M. 2019. Genome‐wide association study dissects the genetic bases of salt tolerance in maize seedlings. Journal of Integrative Plant Biology, 61, 658-674.

Lv Y, Ma J, Wei H, Xiao F, Wang Y, Jahan N, Hazman M, Qian Q, Shang L, Guo L. 2022. Combining GWAS, genome-wide domestication and a transcriptomic analysis reveals the loci and natural alleles of salt tolerance in rice (Oryza sativa L.). Frontiers in Plant Science, 13, 912637.

Ma H S, Liang D, Shuai P, Xia X L, Yin W L. 2010. The salt-and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. Journal of Experimental Botany, 61, 4011-4019.

Ma L, Zhang M, Chen J, Qing C, He S, Zou C, Yuan G, Yang C, Peng H, Pan G. 2021. GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings. Theoretical and Applied Genetics, 134, 3305-3318.

Nayyeripasand L, Garoosi G A, Ahmadikhah A. 2021. Genome-wide association study (GWAS) to identify salt-tolerance QTLs carrying novel candidate genes in rice during early vegetative stage. Rice, 14, 1-21.

Neves G, Marchiosi R, Ferrarese M, Siqueira‐Soares R, Ferrarese‐Filho O. 2010. Root growth inhibition and lignification induced by salt stress in soybean. Journal of Agronomy and Crop Science, 196, 467-473.

Patishtan J, Hartley T N, Fonseca De Carvalho R, Maathuis F J. 2018. Genome‐wide association studies to identify rice salt‐tolerance markers. Plant, Cell & Environment, 41, 970-982.

Pritchard J K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.

Quamruzzaman M, Manik S N, Shabala S, Zhou M. 2021. Improving performance of salt-grown crops by exogenous application of plant growth regulators. Biomolecules, 11, 788.

Rengasamy P. 2006. World salinization with emphasis on Australia. Journal of Experimental Botany, 57, 1017-1023.

Shabala S, Bose J, Hedrich R. 2014. Salt bladders: Do they matter? Trends in Plant Science, 19, 687-691.

Szádeczky-Kardoss I, Szaker H M, Verma R, Darkó É, Pettkó-Szandtner A, Silhavy D, Csorba T. 2022. Elongation factor TFIIS is essential for heat stress adaptation in plants. Nucleic Acids Research, 50, 1927-1950.

Tao Y, Zhao X, Wang X, Hathorn A, Hunt C, Cruickshank A W, Van Oosterom E J, Godwin I D, Mace E S, Jordan D R. 2020. Large‐scale GWAS in sorghum reveals common genetic control of grain size among cereals. Plant Biotechnology Journal, 18, 1093-1105.

Verslues P E, Batelli G, Grillo S, Agius F, Kim Y S, Zhu J, Agarwal M, Katiyar-Agarwal S, Zhu J K. 2007. Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Molecular and Cellular Biology, 27, 7771-7780.

Wang J, Zhang Z. 2021. GAPIT version 3: Boosting power and accuracy for genomic association and prediction. Genomics, Proteomics & Bioinformatics, 19, 629-640.

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer F T, De Beer T A P, Rempfer C, Bordoli L. 2018. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46, W296-W303.

Wind M, Reines D. 2000. Transcription elongation factor SII. Bioessays, 22, 327-336.

Wu J, Yu R, Wang H, Zhou C E, Huang S, Jiao H, Yu S, Nie X, Wang Q, Liu S. 2021. A large‐scale genomic association analysis identifies the candidate causal genes conferring stripe rust resistance under multiple field environments. Plant Biotechnology Journal, 19, 177-191.

Xu G, Cui Y, Wang M, Li M, Yin X, Xia X. 2014. OsMsr9, a novel putative rice F-box containing protein, confers enhanced salt tolerance in transgenic rice and Arabidopsis. Molecular Breeding, 34, 1055-1064.

Xu H R, Liu Y, Yu T F, Hou Z H, Zheng J C, Chen J, Zhou Y B, Chen M, Fu J D, Ma Y Z. 2022. Comprehensive profiling of tubby-like proteins in soybean and roles of the GmTLP8 gene in abiotic stress responses. Frontiers in Plant Science, 13, 844545.

Xu K, Chen S, Li T, Ma X, Liang X, Ding X, Liu H, Luo L. 2015. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biology, 15, 1-13.

Yu Y, Wang P, Bai Y, Wang Y, Wan H, Liu C, Ni Z. 2020. The soybean F-box protein GmFBX176 regulates ABA-mediated responses to drought and salt stress. Environmental and Experimental Botany, 176, 104056.

Yuan J, Wang X, Zhao Y, Khan N U, Zhao Z, Zhang Y, Wen X, Tang F, Wang F, Li Z. 2020. Genetic basis and identification of candidate genes for salt tolerance in rice by GWAS. Scientific Reports, 10, 9958.

Yuan Y, Fang L, Karungo S K, Zhang L, Gao Y, Li S, Xin H. 2016. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis. Plant Cell Reports, 35, 655-666.

Zeng A, Chen P, Korth K, Hancock F, Pereira A, Brye K, Wu C, Shi A. 2017. Genome-wide association study (GWAS) of salt tolerance in worldwide soybean germplasm lines. Molecular Breeding, 37, 1-14.

Zhai L, Zheng T, Wang X, Wang Y, Chen K, Wang S, Xu J, Li Z. 2018. QTL mapping and candidate gene analysis of peduncle vascular bundle related traits in rice by genome-wide association study. Rice, 11, 1-15.

Zhan C, Zhu P, Chen Y, Chen X, Liu K, Chen S, Hu J, He Y, Xie T, Luo S. 2023. Identification of a key locus, qNL3. 1, associated with seed germination under salt stress via a genome-wide association study in rice. Theoretical and Applied Genetics, 136, 58.

Zhang H, Yu F, Xie P, Sun S, Qiao X, Tang S, Chen C, Yang S, Mei C, Yang D. 2023. A Gγ protein regulates alkaline sensitivity in crops. Science, 379, eade8416.

Zhang M, Li Y, Liang X, Lu M, Lai J, Song W, Jiang C. 2023. A teosinte‐derived allele of an HKT1 family sodium transporter improves salt tolerance in maize. Plant Biotechnology Journal, 21, 97-108.

Zhang M, Liang X, Wang L, Cao Y, Song W, Shi J, Lai J, Jiang C. 2019. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nature Plants, 5, 1297-1308.

Zhang S, Li X, Fan S, Zhou L, Wang Y. 2020. Overexpression of HcSCL13, a Halostachys caspica GRAS transcription factor, enhances plant growth and salt stress tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 151, 243-254.

Zhao C, Zhang H, Song C, Zhu J K, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1, 41.

Zhao Z, Zhang G, Zhou S, Ren Y, Wang W. 2017. The improvement of salt tolerance in transgenic tobacco by overexpression of wheat F-box gene TaFBA1. Plant Science, 259, 71-85.

Zhou X, Li J, Wang Y, Liang X, Zhang M, Lu M, Guo Y, Qin F, Jiang C. 2022. The classical SOS pathway confers natural variation of salt tolerance in maize. New Phytologist, 236, 479-494.

Zhu J K. 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6, 441-445.

No related articles found!
No Suggested Reading articles found!