Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (8): 2989-3003    DOI: 10.1016/j.jia.2025.03.004
Special Focus: Innovative Pathways to Sustainable Wheat Production Advanced Online Publication | Current Issue | Archive | Adv Search |
Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change

Baohua Liu1, 2, Ganqiong Li2, Yongen Zhang2, Ling Zhang1, 3, Dianjun Lu1, 4, Peng Yan1, 5, Shanchao Yue1, 6, Gerrit Hoogenboom7, Qingfeng Meng1#, Xinping Chen1, 8

1 China Agricultural University, Beijing 100193, China

2 Agricultural Information Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Monitoring and Early Warning Technology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China

3 Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

4 State Key Laboratory of Soil and Sustainable Agriculture/Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

5 Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China

6 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China

7 Global Food Systems Institute, University of Florida, Gainesville, Florida 32611, USA

8 College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing 400044, China

 Highlights 

Wheat yield potential averaged 10.8 t ha–1 and was limited by pre-winter growing degree days (GDD) and seasonal solar radiation.
Wheat yield potential may decline in the future due to climatic warming and solar dimming, but CO2 fertilization effects could offset these negative impacts.
Adopting multiple management practices that account for complex climate–crop–soil interconnections can enhance wheat yields.


Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
准确估算气候变化背景下小麦的产量潜力对于评估粮食生产能力至关重要。然而,基于不完全优化的田间试验校验的作物机理模型往往低估了小麦的产量潜力。本研究基于CERES-Wheat模型和管理良好的十年长期定位试验数据,定量评估了华北平原小麦的产量潜力,并明确了影响产量潜力及缩小产量差的关键限制因素。结果表明,近十年华北平原小麦的平均产量潜力为10.8 t/ha-1,冬前积温(592)和生育季太阳辐射(3036 MJ/m2)不足是限制产量潜力的关键气候因素。在不考虑CO2浓度升高的情况下,预计2040-2059年间,华北平原小麦的产量潜力在RCP4.5和RCP8.5情景下将分别下降1.8%和5.1%。然而,CO2的施肥效应足以抵消气候变暖和太阳辐射下降的负面影响,最终使2040-2059年间小麦的产量潜力在RCP4.5和RCP8.5情景下分别提高7.5%和9.8%。此外,10月5日播种以及每平米400株的播种密度能最佳匹配华北平原的光热资源,最大化小麦的产量潜力;优化灌溉制度(3次,270 mm)和根层土壤氮素管理措施可以有效缩小产量差。本研究强调了基于气候-作物-土壤协同的综合管理策略对提高华北平原小麦产量潜力和缩小产量差的重要性。


Abstract  

Accurately estimating the wheat yield potential under climate changes is essential for assessing food production capacity.  However, studies based on crop modeling and imperfect management experiment data frequently underestimate the wheat yield potential.  In this study, we evaluated wheat yield potential based on the CERES-Wheat model and a well-managed 10-year (2008–2017) field study in the North China Plain (NCP), and further identified the critical climate and management yield-limiting factors for improving wheat yield potential and closing the wheat yield gap.  Our results revealed that wheat yield potential averaged 10.8 t ha–1 in the recent decade.  The low growing degree days (GDD) in the pre-winter growing season (592°C d) and solar radiation in the whole growth season (3,036 MJ m–2) are the most critical climatic factors limiting wheat yield potential in the current production system.  Nonetheless, wheat yield potential in the NCP is projected to decline during 2040–2059 by 1.8 and 5.1% under the representative concentration pathway (RCP) 4.5 and RCP8.5 scenarios, respectively, without considering the elevated CO2 concentration.  However, the positive influence of CO2 fertilization will be sufficient to offset these negative impacts from climatic warming and solar dimming, ultimately leading to an enhancement in wheat yield potential during 2040–2059 by 7.5 and 9.8% compared to the baseline under RCP4.5 and RCP8.5, respectively.  To improve the wheat yield potential, we recommend selecting an appropriate planting date (5 October) and planting density (400 plants m–2) that align with light and temperature conditions during the wheat growing season.  In addition, optimizing the timing and rate of water application (three times, 270 mm) and fertilizer use (based on in-season root zone nitrogen management) is crucial for closing the wheat yield gap.  This study underscores the importance of adopting multiple management practices that account for complex climate–crop–soil interconnections to enhance the wheat yield based on a long-term field experiment under the changing climate.


Keywords:  CERES-wheat        climate change       field observation       management strategy       yield potential  
Received: 24 October 2024   Online: 17 March 2025   Accepted: 14 February 2025
Fund: 

This study was supported by the National Key Research and Development Program of China (2023YFD2302801), the Central Public-interest Scientific Institution Basal Research Fund of Chinese Academy of Agricultural Sciences (JBYW-AII-2024-38), and the Fundamental Research Funds for the Central Universities and China Scholarship Council.  

About author:  #Correspondence Qingfeng Meng, E-mail: mengqf@cau.edu.cn

Cite this article: 

Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. 2025. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change. Journal of Integrative Agriculture, 24(8): 2989-3003.

Asseng S, Ewert F, Martre P, Rötter R P, Lobell D B, Cammarano D, Kimball B A, Ottman M J, Wall G W, White J W, Reynolds M P, Alderman P D, Prasad P V V, Aggarwal P K, Anothai J, Basso B, Biernath C, Challinor A J, De Sanctis G, Doltra J, et al. 2015. Rising temperatures reduce global wheat production. Nature Climate Change5, 143–147.

Asseng S, Jamieson P D, Kimball B, Pinter P, Sayre K, Bowden J W, Howden S M. 2004. Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2Field Crops Research85, 85–102.

Basso B, Dumont B, Maestrini B, Shcherbak I, Robertson G P, Porter J R, Smith P, Paustian K, Grace P R, Asseng S, Bassu S, Biernath C, Boote K J, Cammarano D, De Sanctis G, Durand J L, Ewert F, Gayler S, Hyndman D W, Kent J, et al. 2018. Soil organic carbon and nitrogen feedbacks on crop yields under climate change. Agricultural & Environmental Letters3, 180026.

Beven K, Binley A. 1992. The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes6, 279–298.

Challinor A J, Watson J, Lobell D B, Howden S M, Smith D R, Chhetri N. 2014. A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change4, 287–291.

Chen C, Baethgen W E, Robertson A. 2013. Contributions of individual variation in temperature, solar radiation and precipitation to crop yield in the North China Plain, 1961–2003. Climatic Change116, 767–788.

Chen C, Wang E, Yu Q, Zhang Y. 2010. Quantifying the effects of climate trends in the past 43 years (1961–2003) on crop growth and water demand in the North China Plain. Climatic Change100, 559–578.

Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, Wang Z, Zhang W, Yan X, Yang J, Deng X, Gao Q, Zhang Q, Guo S, Ren J, Li S, Ye Y, Wang Z, Huang J, Tang Q, et al. 2014. Producing more grain with lower environmental costs. Nature514, 486–489.

Chen Y, Zhang Z, Tao F, Wang P, Wei X. 2017. Spatio-temporal patterns of winter wheat yield potential and yield gap during the past three decades in North China. Field Crops Research206, 11–20.

Cui Z, Chen X, Miao Y, Li F, Zhang F, Li J, Ye Y, Yang Z, Zhang Q, Liu C. 2008. On-farm evaluation of winter wheat yield response to residual soil nitrate-N in North China Plain. Agronomy Journal100, 1527–1534.

Cui Z, Zhang H, Chen X, Zhang C, Ma W, Huang C, Zhang W, Mi G, Miao Y, Li X, Gao Q, Yang J, Wang Z, Ye Y, Guo S, Lu J, Huang J, Lv S, Sun Y, Liu Y, et al. 2018. Pursuing sustainable productivity with millions of smallholder farmers. Nature555, 363–366.

Deryng D, Elliott J, Folberth C, Müller C, Pugh T A M, Boote K J, Conway D, Ruane A C, Gerten D, Jones J W, Khabarov N, Olin S, Schaphoff S, Schmid E, Yang H, Rosenzweig C. 2016. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nature Climate Change6, 786–790.

van Dijk M, Morley T, Rau M L, Saghai Y. 2021. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food2, 494–501.

Ding Z, Ali E F, Elmahdy A M, Ragab K E, Seleiman M F, Kheir A M S. 2021. Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity. Agricultural Water Management244, 106626.

Evans L T. 1996. Crop Evolution, Adaptation and Yield. Cambridge University Press, Cambridge, UK.

FAO (Food and Agriculture Organization of the United Nations). 2023. FAOSTAT (Food and agriculture data). [2023-11-21]. http://faostat.fao.org/

Feng S, Gu S, Zhang H, Wang D. 2017. Root vertical distribution is important to improve water use efficiency and grain yield of wheat. Field Crops Research214, 131–141.

Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber J S, Johnston M, Mueller N D, O’Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, et al. 2011. Solutions for a cultivated planet. Nature478, 337–342.

Godwin D, Ritchie J, Singh U, Hunt L. 1990. A User’s Guide to CERES-Wheat v2.1. 2nd ed. International Fertilizer Development Center, Muscle Shoals, AL, USA.

Guarin J R, Martre P, Ewert F, Webber H, Dueri S, Calderini D, Reynolds M, Molero G, Miralles D, Garcia G, Slafer G, Giunta F, Pequeno D N L, Stella T, Ahmed M, Alderman P D, Basso B, Berger A G, Bindi M, Bracho-Mujica G, et al. 2022. Evidence for increasing global wheat yield potential. Environmental Research Letters17, 124045.

Gupta N, Singh Y, Jat H S, Singh L K, Choudhary K M, Sidhu H S, Gathala M K, Jat M L. 2023. Precise irrigation water and nitrogen management improve water and nitrogen use efficiencies under conservation agriculture in the maize–wheat systems. Scientific Report13, 12060.

Habib-Ur-Rahman M, Ahmad A, Raza A, Hasnain M U, Alharby H F, Alzahrani Y M, Bamagoos A A, Hakeem K R, Ahmad S, Nasim W, Ali S, Mansour F, El Sabagh A. 2022. Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Frontiers in Plant Science13, 925548.

He J, Cai H, Bai J. 2013. Irrigation scheduling based on CERES-Wheat model for spring wheat production in the Minqin Oasis in Northwest China. Agricultural Water Management128, 19–31.

He J, Dukes M D, Jones J W, Graham W D, Judge J. 2009. Applying GLUE for estimating CERES-Maize genetic and soil parameters for sweet corn production. Transaction on ASABE52, 1907–1921.

He J, Jones J W, Graham W D, Dukes M D. 2010. Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method. Agricultural Systems103, 256–264.

He X, Zhang L, Hu Y, Liang Z, Zhang W, Meng Q, Zou C, Chen X, Yang H. 2022. Pursuing sustainable highyield winter wheat via preanthesis dry matter and nitrogen accumulation by optimizing nitrogen management. Agronomy Journal114, 1229–1245.

Hodges T. 1991. Predicting Crop Phenology. CRC Press, Boca Raton, FL, USA. pp. 115–131.

van Ittersum M K, Rabbinge R. 1997. Concepts in production ecology for analysis and quantification of agricultural input–output combinations. Field Crops Research52, 197–208.

Jones J W, Hoogenboom G, Porter C H, Boote K J, Batchelor W D, Hunt L A, Wilkens P W, Singh U, Gijsman A J, Ritchie J T. 2003. The DSSAT cropping system model. European Journal of Agronomy18, 235–265.

Ju H, van der V M, Lin E, Xiong W, Li Y. 2013. The impacts of climate change on agricultural production systems in China. Climatic Change120, 313–324.

Kimball B A, Pinter P J, Garcia R L, LaMorte R L, Wall G W, Hunsaker D J, Wechsung G, Wechsung F, Kartschall T. 1995. Productivity and water use of wheat under free-air CO2 enrichment. Global Change Biology1, 429–442.

Kruijt B, Witte J P M, Jacobs C M J, Kroon T. 2008. Effects of rising atmospheric CO2 on evapotranspiration and soil moisture: A practical approach for the Netherlands. Journal of Hydrology349, 257–267.

Lal R. 2015. Restoring soil quality to mitigate soil degradation. Sustainability7, 5875–5895.

Leng G, Hall J. 2019. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Science of the Total Environment654, 811–821.

Lesk C, Coffel E, Winter J, Ray D, Zscheischler J, Seneviratne S I, Horton R. 2021. Stronger temperature-moisture couplings exacerbate the impact of climate warming on global crop yields. Nature Food2, 683–691.

Li E, Zhao J, Pullens J W M, Yang X. 2022. The compound effects of drought and high temperature stresses will be the main constraints on maize yield in Northeast China. Science of the Total Environment81, 152461.

Li J, Inanaga S, Li Z, Eneji A E. 2005. Optimizing irrigation scheduling for winter wheat in the North China Plain. Agricultural Water Management76, 8–23.

Li K N, Yang X G, Liu Z J, Zhang T Y, Lu S, Liu Y. 2014. Low yield gap of winter wheat in the North China Plain. European Journal of Agronomy59, 1–12.

Li Q, Bian C, Liu X, Ma C, Liu Q. 2015. Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain. Agricultural Water Management153, 71–76.

Li Q, Yin J, Liu W, Zhou S, Li L, Niu J, Niu H, Ma Y. 2012. Determination of optimum growing degree-days (GDD) range before winter for wheat cultivars with different growth characteristics in North China Plain. Journal of Integrative Agriculture11, 405–415.

Liu X, Sun H, Feike T, Zhang X, Shao L, Chen S. 2016. Assessing the impact of air pollution on grain yield of winter wheat - A case study in the North China Plain. PLoS ONE11, e162655.

Liu Y, Wang E, Yang X, Wang J. 2010. Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s. Global Change Biology16, 2287–2299.

Lobell D B, Bänziger M, Magorokosho C, Vivek B. 2011. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change1, 42–45.

Lobell D B, Burke M B, Tebaldi C, Mastrandrea M D, Falcon W P, Naylor R L. 2008. Prioritizing climate change adaptation needs for food security in 2030. Science319, 607–610.

Lu C, Fan L. 2013. Winter wheat yield potentials and yield gaps in the North China Plain. Field Crops Research143, 98–105.

Lu D J. 2015. Dynamics of populations trait for high yielding and high efficiency winter wheat and N nutrient regulation in the North China Plain. Ph D thesis, China Agricultural University, China. (in Chinese)

Meng Q, Liu B, Yang H, Chen X. 2020. Solar dimming decreased maize yield potential on the North China Plain. Food and Energy Security9, e235.

Meng Q, Sun Q, Chen X, Cui Z, Yue S, Zhang F, Römheld V. 2012. Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. AgricultureEcosystems & Environment146, 93–102.

Morales A, Villalobos F J. 2023. Using machine learning for crop yield prediction in the past or the future. Frontiers in Plant Science14, 1128388.

NBS (National Bureau of Statistics of China). 2023. China Statistical Yearbook. [2023-11-21]. https://data.stats.gov.cn/

Palosuo T, Kersebaum K C, Angulo C, Hlavinka P, Moriondo M, Olesen J E, Patil R H, Ruget F, Rumbaur C, Takáč J, Trnka M, Bindi M, Çaldağ B, Ewert F, Ferrise R, Mirschel W, Şaylan L, Aiška B, Rötter R. 2011. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. European Journal of Agronomy35, 103–114.

Qiao L, Wang X, Smith P, Fan J, Lu Y, Emmett B, Li R, Dorling S, Chen H, Liu S, Benton T G, Wang Y, Ma Y, Jiang R, Zhang F, Piao S, Mϋller C, Yang H, Hao Y, Li W, et al. 2022. Soil quality both increases crop production and improves resilience to climate change. Nature Climate Change12, 574–580.

Qu C, Li X, Ju H, Liu Q. 2019. The impacts of climate change on wheat yield in the Huang-Huai-Hai Plain of China using DSSAT-CERES-Wheat model under different climate scenarios. Journal of Integrative Agriculture18, 1379–1391.

Rashid M A, Jabloun M, Andersen M N, Zhang X Y, Olesen J E. 2019. Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain. Agricultural Water Management222, 193–203.

Reynolds M P, Quilligan E, Aggarwal P K, Bansal K C, Cavalieri A J, Chapman S C, Chapotin S M, Datta S K, Duveiller E, Gill K S, Jagadish K S V, Joshi A K, Koehler A, Kosina P, Krishnan S, Lafitte R, Mahala R S, Muthurajan R, Paterson A H, Prasanna B M, et al. 2016. An integrated approach to maintaining cereal productivity under climate change. Global Food Security8, 9–18.

Ritchie J T. 1998. Soil water balance and plant water stress. In: Tsuji G Y, Hoogenboom G, Thornton P K, eds., Understanding Options for Agricultural Production. Kluwer Academic, Dordrecht, The Netherlands. pp. 41–54.

Ritchie J T, Godwin D C. 1989. Description of soil balance. In: Virnami S M, Tandon H L S, Alagarswamy G, eds., Modeling the Growth and Development of Sorghum and Pearl Millet. Research Bulletin 12. International Crops Research Institute for the Semi-Arid Tropics, Pradesh, India. pp. 14–16.

Ritchie J T, Godwin D C, Otter-Nacke S. 1988. CERES-WheatA Simulation Model of Wheat Growth and Development. Texas A&M University Press, College Station.

Ritchie J T, Otter S. 1985. Description and Performance of CERES-WheatA User Oriented Wheat Yield Model. ARS Wheat Yield Project. ARS-38. National Technical Information Service, Springfield, VA, USA. pp. 159–175.

Ritchie J T, Singh U, Godwin D C, Bowen W T. 1998. Cereal growth development and yield. In: Tsuji Y G, Hoogenboom G, Thornton P K, eds., Understanding Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht. pp. 79–98.

Shoukat M R, Cai D, Shafeeque M, Habib-Ur-Rahman M, Yan H. 2022. Warming climate and elevated CO2 will enhance future winter wheat yields in North China Region. Atmosphere13, 1275.

Sun H, Zhang X, Chen S, Pei D, Liu C. 2007. Effects of harvest and sowing time on the performance of the rotation of winter wheat–summer maize in the North China Plain. Industrial Crops and Products25, 239–247.

Sun Q, Kröbel R, Müller T, Römheld V, Cui Z, Zhang F, Chen X. 2011. Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain. Agricultural Water Management98, 808–814.

Tie X, Huang R, Dai W, Cao J, Long X, Su X, Zhao S, Wang Q, Li G. 2016. Effect of heavy haze and aerosol pollution on rice and wheat productions in China. Scientific Reports6, 29612.

Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z. 2006. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agricultural and Forest Meteorology138, 82–92.

Tao F, Zhang Z. 2013. Climate change, wheat productivity and water use in the North China Plain: A new super-ensemble-based probabilistic projection. Agricultural and Forest Meteorology170, 146–165.

Tao F, Zhang Z, Zhang S, Zhu Z, Shi W. 2012. Response of crop yields to climate trends since 1980 in China. Climate Research54, 233–247.

Toreti A, Deryng D, Tubiello F N, Müller C, Kimball B A, Moser G, Boote K, Asseng S, Pugh T A M, Vanuytrecht E, Pleijel H, Webber H, Durand J, Dentener F, Ceglar A, Wang X, Badeck F, Lecerf R, Wall G W, van den Berg M, et al. 2020. Narrowing uncertainties in the effects of elevated CO2 on crops. Nature Food1, 775–782.

Vogel E, Donat M G, Alexander L, Meinshausen M, Ray D K, Karoly D, Meinshausen N, Frieler K. 2019. The effects of climate extremes on global agricultural yields. Environmental Research Letters14, 054010.

Wang J, Wang E, Yang X, Zhang F, Yin H. 2012. Increased yield potential of wheat–maize cropping system in the North China Plain by climate change adaptation. Climatic Change113, 825–840.

Wall D H, Six J. 2015. Give soils their due. Science347, 695.

Wu D, Yu Q, Lu C, Hengsdijk H. 2006. Quantifying production potentials of winter wheat in the North China Plain. European Journal of Agronomy24, 226–235.

Xiao D, Liu D L, Wang B, Feng P, Bai H, Tang J. 2020. Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios. Agricultural Water Management238, 106238.

Xiao L, Wang G, Wang E, Liu S, Chang J, Zhang P, Zhou H, Wei Y, Zhang H, Zhu Y, Shi Z, Luo Z. 2024. Spatiotemporal co-optimization of agricultural management practices towards climate-smart crop production. Nature Food5, 59–71.

Xiong W, Holman I, Lin E, Conway D, Li Y, Wu W. 2012. Untangling relative contributions of recent climate and CO2 trends to national cereal production in China. Environmental Research Letters7, 44014.

Xu X, Zhang M, Li J, Liu Z, Zhao Z, Zhang Y, Zhou S, Wang Z. 2018. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crops Research221, 219–227.

Yang P, Wu W, Li Z, Yu Q, Inatsu M, Liu Z, Tang P, Zha Y, Kimoto M, Tang H. 2014. Simulated impact of elevated CO2, temperature, and precipitation on the winter wheat yield in the North China Plain. Regional Environmental Change14, 61–74.

Ye T, Liu B, Wang X, Zhou J, Liu L, Tang L, Cao W, Zhu Y. 2022. Effects of water–nitrogen interactions on the fate of nitrogen fertilizer in a wheat–soil system. European Journal of Agronomy136, 126507.

Yu S L, Yu Z W, Dong Q Y, Wang D, Zhang Y L, Yao D C, Wang J Q. 2010. Winter wheat high-yield culture technique of 789.9 kg per mu. Shandong Agricultural Sciences4, 11–12. (in Chinese)

Zhang B, Li X, Chen H, Niu W, Kong X, Yu Q, Zhao M, Xia X. 2022. Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity. Land Use Policy117, 106080.

Zhao C, Liu B, Piao S, Wang X, Lobell D B, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, Durand J, Elliott J, Ewert F, Janssens I A, Li T, Lin E, Liu Q, Martre P, Müller C, Peng S, et al. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America114, 9326–9331.

Zhou L, Chen X, Tian X. 2018. The impact of fine particulate matter (PM2.5) on China’s agricultural production from 2001 to 2010. Journal of Cleaner Production178, 133–141.

[1] DING Pu-yang, MO Zi-qiang, TANG Hua-ping, MU Yang, DENG Mei, JIANG Qian-tao, LIU Ya-xi, CHEN Guang-deng, CHEN Guo-yue, WANG Ji-rui, LI Wei, QI Peng-fei, JIANG Yun-feng, KANG Hou-yang, YAN Gui-jun, Wei Yu-ming, ZHENG You-liang, LAN Xiu-jin, MA Jian. A major and stable QTL for wheat spikelet number per spike validated in different genetic backgrounds[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1551-1562.
[2] LIU Zheng-chun, WANG Chao, BI Ru-tian, ZHU Hong-fen, HE Peng, JING Yao-dong, YANG Wu-de. Winter wheat yield estimation based on assimilated Sentinel-2 images with the CERES-Wheat model[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1958-1968.
[3] LIU Guang-zhou, LIU Wan-mao, HOU Peng, MING Bo, YANG Yun-shan, GUO Xiao-xia, XIE Rui-zhi, WANG Ke-ru, LI Shao-kun. Reducing maize yield gap by matching plant density and solar radiation[J]. >Journal of Integrative Agriculture, 2021, 20(2): 363-370.
[4] LIU Hang, TANG Hua-ping, LUO Wei, MU Yang, JIANG Qian-tao, LIU Ya-xi, CHEN Guo-yue, WANG Ji-rui, ZHENG Zhi, QI Peng-fei, JIANG Yun-feng, CUI Fa, SONG Yin-ming, YAN Gui-jun, WEI Yuming, LAN Xiu-jin, ZHENG You-liang, MA Jian. Genetic dissection of wheat uppermost-internode diameter and its association with agronomic traits in five recombinant inbred line populations at various field environments[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2849-2861.
[5] QU Chun-hong, LI Xiang-xiang, JU Hui, LIU Qin. The impacts of climate change on wheat yield in the Huang-Huai- Hai Plain of China using DSSAT-CERES-Wheat model under different climate scenarios[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1379-1391.
[6] SONG Chun-xiao, LIU Rui-feng, Les Oxley, MA Heng-yun. Do farmers care about climate change? Evidence from five major grain producing areas of China[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1402-1414.
[7] XU Hai-cheng, DAI Xing-long, CHU Jin-peng, WANG Yue-chao, YIN Li-jun, MA Xin, DONG Shu-xin, HE Ming-rong. Integrated management strategy for improving the grain yield and nitrogen-use efficiency of winter wheat[J]. >Journal of Integrative Agriculture, 2018, 17(2): 315-327.
[8] ZHOU Li-li, LIAO Shu-hua, WANG Zhi-min, WANG Pu, ZHANG Ying-hua, YAN Hai-jun, GAO Zhen, SHEN Si, LIANG Xiao-gui, WANG Jia-hui, ZHOU Shun-li. A simulation of winter wheat crop responses to irrigation management using CERES-Wheat model in the North China Plain[J]. >Journal of Integrative Agriculture, 2018, 17(05): 1181-1193.
[9] LIN Er-da, GUO Li-ping, JU Hui. Challenges to increasing the soil carbon pool of agro-ecosystems in China[J]. >Journal of Integrative Agriculture, 2018, 17(04): 723-725.
[10] Syed Adeel Zafar, Amjad Hameed, Muhammad Amjad Nawaz, MA Wei, Mehmood Ali Noor, Muzammil Hussain, Mehboob-ur-Rahman. Mechanisms and molecular approaches for heat tolerance in rice (Oryza sativa L.) under climate change scenario[J]. >Journal of Integrative Agriculture, 2018, 17(04): 726-738.
[11] ZHANG Jia, HU Yong, XU Li-he, HE Qin, FAN Xiao-wei, XING Yong-zhong. The CCT domain-containing gene family has large impacts on heading date, regional adaptation, and grain yield in rice[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2686-2697.
[12] WANG Fei, PENG Shao-bing. Yield potential and nitrogen use efficiency of China’s super rice[J]. >Journal of Integrative Agriculture, 2017, 16(05): 1000-1008.
[13] HUANG Min, TANG Qi-yuan, AO He-jun, ZOU Ying-bin. Yield potential and stability in super hybrid rice and its production strategies[J]. >Journal of Integrative Agriculture, 2017, 16(05): 1009-1017.
[14] WEI Huan-he, LI Chao, XING Zhi-peng, WANG Wen-ting, DAI Qi-gen, ZHOU Gui-shen, WANG Li, XU Ke, HUO Zhong-yang, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Suitable growing zone and yield potential for late-maturity type of Yongyou japonica/indica hybrid rice in the lower reaches of Yangtze River, China[J]. >Journal of Integrative Agriculture, 2016, 15(1): 50-62.
[15] Saeed Rauf, Maria Zaharieva, Marilyn L Warburton, ZHANG Ping-zhi, Abdullah M AL-Sadi, Farghama Khalil, Marcin Kozak, Sultan A Tariq. Breaking wheat yield barriers requires integrated efforts in developing countries[J]. >Journal of Integrative Agriculture, 2015, 14(8): 1447-1474.
No Suggested Reading articles found!