Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1972-1986    DOI: 10.1016/j.jia.2024.04.025
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Development of an improved reverse genetics system for avian metapneumovirus (aMPV): A novel vaccine vector protects against aMPV and infectious bursal disease virus

Lingzhai Meng1, Yuntong Chen1, Mengmeng Yu1, Peng Liu1, Xiaole Qi1, Xiaoxiao Xue1, Ru Guo1, Tao Zhang1, Mingxue Hu1, Wenrui Fan1, Ying Wang1, Suyan Wang1, Yanping Zhang1, Yongzhen Liu1, Yulu Duan1, Hongyu Cui1, Yulong Gao1, 2#

1 Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China

2 National Poultry Laboratory Animal Resource Center, Harbin 150069, China

 Highlights 
Development of an improved reverse genetics system for aMPV subtype B.
Identified the optimal insertion site (between G and L genes) of aMPV/B for expressing the foreign gene.
Recombinant aMPV subtype B rLN16A-vvVP2 strain expressing the VP2 gene of vvIBDV provided complete protection against both vvIBDV and virulent aMPV subtype B viruses.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

禽偏肺病毒(Avian metapneumovirus,aMPV)为副黏病毒科肺病毒亚科肺病毒属家族的成员,其主要引起火鸡鼻气管炎(Turkey rhinotracheitis,TRT)和肉鸡肿头综合征(Swollen head syndrome,SHS)。目前,B亚型aMPV是我鸡群中主要的优势流行毒株,由于缺乏aMPV反向遗传操作技术,有关该病毒的致病与致弱机制及是否可作为病毒载体的研究相对较少。为此,本研究B亚型aMPV弱毒株LN16-A株全长分为5cDNA片段进行扩增,并在基因组的3′端和5′端分别添加了T7启动子和丁型肝炎核酶序列,构建了全长cDNA感染性克隆质粒pOKLN16-A。pOKLN16-A4个辅助质粒pCAGGS-NpCAGGS-PpCAGGS-M21pCAGGS-L共转染至表达T7 RNA聚合酶的BSR-T7/5细胞中,拯救出了病毒,成功建立了基于T7 RNA聚合酶aMPV反向遗传操作系统。为进一步探究aMPV作为疫苗载体的潜力,利用反向遗传操作技术将增强型绿色荧光蛋白基因Enhanced green fluorescent protein,EGFP)插入aMPV基因组的不同位点,并比较了其表达水平,结果显示,EGFPB亚型aMPVGL基因之间的表达水平显著高于另外两个插入位点(前导基因和N基因之间及替换SH基因),因此确定外源基因表达的最佳插入位点为GL基因之间。进一步验证该插入位点的可用性,以鸡传染性法氏囊病病毒超强毒株Very virulent infection bursal disease virus,vvIBDV为模式病毒,利用反向遗传操作技术在该位点插入了其保护性抗原VP2基因,成功了稳定表达vvIBDV VP2蛋白的重组B亚型aMPV,命名为rLN16A-vvVP2株。将rLN16A-vvVP2株以5000 TCID50/只的剂量免疫SPF鸡,免疫3周后使用B亚型aMPV LN16-F4强毒株及vvIBDV HLJ0504强毒株进行攻毒。结果显示,单次免疫rLN16A-vvVP2株可同时诱导机体产生针对B亚型aMPVvvIBDV两种病毒的中和抗体,免疫3周后的中和抗体效价分别为8.78.2 log2。此外,单次免疫rLN16A-vvVP2B亚型aMPV强毒及vvIBDV强毒的攻毒保护率均为100%并能有效预防vvIBDV攻击后引起的法氏囊损伤。本研究成功建立了B亚型aMPV的反向遗传操作系统并鉴定了外源基因表达的最佳插入位点,首次评价了B亚型aMPV作为疫苗载体的潜力,研究结果为进一步研究aMPV的致病机制和安全有效的新型载体疫苗提供技术支撑



Abstract  

Avian metapneumovirus (aMPV), a paramyxovirus, causes acute respiratory diseases in turkeys and swollen head syndrome in chickens.  This study established a reverse genetics system for aMPV subtype B LN16-A strain based on T7 RNA polymerase.  Full-length cDNA of the LN16-A strain was constructed by assembling 5 cDNA fragments between the T7 promoter and hepatitis delta virus ribozyme.  Transfection of this plasmid, along with the supporting plasmids encoding the N, P, M2-1, and L proteins of LN16-A into BSR-T7/5 cells, resulted in the recovery of aMPV subtype B.  To identify an effective insertion site, the enhanced green fluorescent protein (EGFP) gene was inserted into different sites of the LN16-A genome to generate recombinant LN16-As.  The results showed that the expression levels of EGFP at the site between the G and L genes of LN16-A were significantly higher than those at the other two sites (between the leader and N genes or replacing the SH gene).  To verify the availability of the site between G and L for foreign gene expression, the VP2 gene of very virulent infectious bursal disease virus (vvIBDV) was inserted into this site, and recombinant LN16-A (rLN16A-vvVP2) was successfully rescued.  Single immunization of specific-pathogen-free chickens with rLN16A-vvVP2 induced high levels of neutralizing antibodies and provided 100% protection against the virulent aMPV subtype B and vvIBDV.  Establishing a reverse genetics system here provides an important foundation for understanding aMPV pathogenesis and developing novel vector vaccines.

Keywords:  avian metapneumovirus        reverse genetics system        insertion site        protection        vector vaccines  
Received: 06 January 2024   Online: 13 April 2024   Accepted: 02 March 2024
Fund: This work was supported by the grants from the National Key Research and Development Program of China (2022YFD1800604), the China Agriculture Research System (CARS-41), and the Heilongjiang Touyan Innovation Team Program, China.
About author:  Lingzhai Meng, E-mail: menglingzhai@126.com; #Correspondence Yulong Gao, Tel: +86-451-51091691, E-mail: gaoyulong@caas.cn

Cite this article: 

Lingzhai Meng, Yuntong Chen, Mengmeng Yu, Peng Liu, Xiaole Qi, Xiaoxiao Xue, Ru Guo, Tao Zhang, Mingxue Hu, Wenrui Fan, Ying Wang, Suyan Wang, Yanping Zhang, Yongzhen Liu, Yulu Duan, Hongyu Cui, Yulong Gao. 2025. Development of an improved reverse genetics system for avian metapneumovirus (aMPV): A novel vaccine vector protects against aMPV and infectious bursal disease virus. Journal of Integrative Agriculture, 24(5): 1972-1986.

Ballart I, Eschle D, Cattaneo R, Schmid A, Metzler M, Chan J, Pifko-Hirst S, Udem S A, Billeter M A. 1990. Infectious measles virus from cloned cDNA. EMBO Journal9, 379–384.

Bao Y, Yu M, Liu P, Hou F, Muhammad F, Wang Z, Li X, Zhang Z, Wang S, Chen Y, Cui H, Liu A, Qi X, Pan Q, Zhang Y, Gao L, Li K, Liu C, He X, Wang X, et al. 2020. Novel inactivated subtype B avian metapneumovirus vaccine induced humoral and cellular immune responses. Vaccines (Basel), 8, 762.

Bayliss C D, Peters R W, Cook J K, Reece R L, Howes K, Binns M M, Boursnell M E. 1991. A recombinant fowlpox virus that expresses the VP2 antigen of infectious bursal disease virus induces protection against mortality caused by the virus. Archives of Virology120, 193–205.

Bennett R S, McComb B, Shin H J, Njenga M K, Nagaraja K V, Halvorson D A. 2002. Detection of avian pneumovirus in wild Canada (Branta canadensis) and blue-winged teal (Anas discors) geese. Avian Diseases46, 1025–1029.

Biacchesi S, Skiadopoulos M H, Tran K C, Murphy B R, Collins P L, Buchholz U J. 2004. Recovery of human metapneumovirus from cDNA: Optimization of growth in vitro and expression of additional genes. Virology321, 247–259.

Broor S, Bharaj P. 2007. Avian and human metapneumovirus. Annals of the New York Academy of Sciences1102, 66–85.

Brown P A, Lupini C, Catelli E, Clubbe J, Ricchizzi E, Naylor C J. 2011. A single polymerase (L) mutation in avian metapneumovirus increased virulence and partially maintained virus viability at an elevated temperature. Journal of General Virology92, 346–354.

Bu Y W, Yang H M, Jin J H, Zhao J, Xue J, Zhang G Z. 2019. Recombinant Newcastle disease virus (NDV) La Sota expressing the haemagglutinin-neuraminidase protein of genotype VII NDV shows improved protection efficacy against NDV challenge. Avian Pathology48, 91–97.

Cheng X, Zhou H, Tang R S, Munoz M G, Jin H. 2001. Chimeric subgroup A respiratory syncytial virus with the glycoproteins substituted by those of subgroup B and RSV without the M2–2 gene are attenuated in African green monkeys. Virology283, 59–68.

Cook J K, Chesher J, Orthel F, Woods M A, Orbell S J, Baxendale W, Huggins M B. 2000. Avian pneumovirus infection of laying hens: Experimental studies. Avian Pathology29, 545–556.

Cook J K, Ellis M M, Huggins M B. 1991. The pathogenesis of turkey rhinotracheitis virus in turkey poults inoculated with the virus alone or together with two strains of bacteria. Avian Pathology20, 155–166.

Durbin A P, Hall S L, Siew J W, Whitehead S S, Collins P L, Murphy B R. 1997. Recovery of infectious human parainfluenza virus type 3 from cDNA. Virology235, 323–332.

Falchieri M, Lupini C, Cecchinato M, Catelli E, Kontolaimou M, Naylor C J. 2013. Avian metapneumoviruses expressing Infectious Bronchitis virus genes are stable and induce protection. Vaccine31, 2565–2571.

Freiberg A, Dolores L K, Enterlein S, Flick R. 2008. Establishment and characterization of plasmid-driven minigenome rescue systems for Nipah virus: RNA polymerase I- and T7-catalyzed generation of functional paramyxoviral RNA. Virology370, 33–44.

Gao L, Qi X, Li K, Gao H, Gao Y, Qin L, Wang Y, Wang X. 2011. Development of a tailored vaccine against challenge with very virulent infectious bursal disease virus of chickens using reverse genetics. Vaccine29, 5550–5557.

Garcia J, Sovero M, Kochel T, Laguna-Torres V A, Gamero M E, Gomez J, Sanchez F, Arango A E, Jaramillo S, Halsey E S. 2012. Human metapneumovirus strains circulating in Latin America. Archives of Virology157, 563–568.

Govindarajan D, Buchholz U J, Samal S K. 2006. Recovery of avian metapneumovirus subgroup C from cDNA: Cross-recognition of avian and human metapneumovirus support proteins. Journal of Virology80, 5790–5797.

Huang Z, Elankumaran S, Yunus A S, Samal S K. 2004. A recombinant Newcastle disease virus (NDV) expressing VP2 protein of infectious bursal disease virus (IBDV) protects against NDV and IBDV. Journal of Virology78, 10054–10063.

Jardine C M, Parmley E J, Buchanan T, Nituch L, Ojkic D. 2018. Avian metapneumovirus subtype C in Wild Waterfowl in Ontario Canada. Transboundary and Emerging Diseases65, 1098–1102.

Jiang Y, Liu H, Liu P, Kong X. 2009. Plasmids driven minigenome rescue system for Newcastle disease virus V4 strain. Molecular Biology Reports36, 1909–1914.

Jin H, Cheng X, Zhou H Z, Li S, Seddiqui A. 2000. Respiratory syncytial virus that lacks open reading frame 2 of the M2 gene (M2–2) has altered growth characteristics and is attenuated in rodents. Journal of Virology74, 74–82.

Jones R C, Baxter-Jones C, Wilding G P, Kelly D F. 1986. Demonstration of a candidate virus for turkey rhinotracheitis in experimentally inoculated turkeys. Veterinary Record119, 599–600.

Laconi A, Clubbe J, Falchieri M, Lupini C, Cecchinato M, Catelli E, Listorti V, Naylor C J. 2016. A comparison of AMPV subtypes A and B full genomes, gene transcripts and proteins led to reverse-genetics systems rescuing both subtypes. Journal of General Virology97, 1324–1332.

Li K, Liu Y, Liu C, Gao L, Zhang Y, Cui H, Gao Y, Qi X, Zhong L, Wang X. 2016. Recombinant Marek’s disease virus type 1 provides full protection against very virulent Marek’s and infectious bursal disease viruses in chickens. Scientific Reports6, 39263.

Li K, Liu Y, Zhang Y, Gao L, Liu C, Cui H, Qi X, Gao Y, Zhong L, Wang X. 2017. Protective efficacy of a novel recombinant Marek’s disease virus vector vaccine against infectious bursal disease in chickens with or without maternal antibodies. Veterinary Immunology and Immunopathology186, 55–59.

Lin Y, Bright A C, Rothermel T A, He B. 2003. Induction of apoptosis by paramyxovirus simian virus 5 lacking a small hydrophobic gene. Journal of Virology77, 3371–3383.

Ling R, Easton A J, Pringle C R. 1992. Sequence analysis of the 22K, SH and G genes of turkey rhinotracheitis virus and their intergenic regions reveals a gene order different from that of other pneumoviruses. Journal of General Virology73, 1709–1715.

Ling R, Pringle C R. 1988. Turkey rhinotracheitis virus: In vivo and in vitro polypeptide synthesis. Journal of General Virology69, 917–923.

Ling R, Sinkovic S, Toquin D, Guionie O, Eterradossi N, Easton A J. 2008. Deletion of the SH gene from avian metapneumovirus has a greater impact on virus production and immunogenicity in turkeys than deletion of the G gene or M2–2 open reading frame. Journal of General Virology89, 525–533.

Liu Y, Li K, Cui H, Gao L, Liu C, Zhang Y, Gao Y, Wang X. 2017. Comparison of different sites in recombinant Marek’s disease virus for the expression of green fluorescent protein. Virus Research235, 82–85.

Lupini C, Cecchinato M, Ricchizzi E, Naylor C J, Catelli E. 2011. A turkey rhinotracheitis outbreak caused by the environmental spread of a vaccine-derived avian metapneumovirus. Avian Pathology40, 525–530.

Meng L, Yu M, Wang S, Chen Y, Bao Y, Liu P, Feng X, He T, Guo R, Zhang T, Hu M, Liu C, Qi X, Li K, Gao L, Zhang Y, Cui H, Gao Y. 2024. A novel live attenuated vaccine candidate protects against subtype B avian metapneumovirus in chickens. Journal of Integrative Agriculture23, 1658–1670.

Muller H, Islam M R, Raue R. 2003. Research on infectious bursal disease - the past, the present and the future. Veterinary Microbiology97, 153–165.

Naylor C J, Brown P A, Edworthy N, Ling R, Jones R C, Savage C E, Easton A J. 2004. Development of a reverse-genetics system for Avian pneumovirus demonstrates that the small hydrophobic (SH) and attachment (G) genes are not essential for virus viability. Journal of General Virology85, 3219–3227.

Panda A, Huang Z, Elankumaran S, Rockemann D D, Samal S K. 2004. Role of fusion protein cleavage site in the virulence of Newcastle disease virus. Microbial Pathogenesis36, 1–10.

Peeters B P, de Leeuw O S, Koch G, Gielkens A L. 1999. Rescue of Newcastle disease virus from cloned cDNA: Evidence that cleavability of the fusion protein is a major determinant for virulence. Journal of Virology73, 5001–5009.

Plattet P, Zweifel C, Wiederkehr C, Belloy L, Cherpillod P, Zurbriggen A, Wittek R. 2004. Recovery of a persistent Canine distemper virus expressing the enhanced green fluorescent protein from cloned cDNA. Virus Research101, 147–153.

Randhawa J S, Marriott A C, Pringle C R, Easton A J. 1997. Rescue of synthetic minireplicons establishes the absence of the NS1 and NS2 genes from avian pneumovirus. Journal of Virology71, 9849–9854.

Rima B, Collins P, Easton A, Fouchier R, Kurath G, Lamb R A, Lee B, Maisner A, Rota P, Wang L, Ictv Report C. 2017. ICTV Virus Taxonomy Profile: Pneumoviridae. Journal of General Virology98, 2912–2913.

Toquin D, Guionie O, Jestin V, Zwingelstein F, Allee C, Eterradossi N. 2006. European and American subgroup C isolates of avian metapneumovirus belong to different genetic lineages. Virus Genes32, 97–103.

Wertz G W, Perepelitsa V P, Ball L A. 1998. Gene rearrangement attenuates expression and lethality of a nonsegmented negative strand RNA virus. Proceedings of the National Academy of Sciences of the United States of America95, 3501–3506.

Wilding G P, Baxter-Jones C, Grant M. 1986. Ciliostatic agent found in rhinotracheitis. Veterinary Record118, 735.

Yu M, Xing L, Chang F, Bao Y, Wang S, He X, Wang J, Wang S, Liu Y, Farooque M, Pan Q, Wang Y, Gao L, Qi X, Hussain A, Li K, Liu C, Zhang Y, Cui H, Wang X, et al. 2019. Genomic sequence and pathogenicity of the first avian metapneumovirus subtype B isolated from chicken in China. Veterinary Microbiology228, 32–38.

Yu Q, Davis P J, Li J, Cavanagh D. 1992. Cloning and sequencing of the matrix protein (M) gene of turkey rhinotracheitis virus reveal a gene order different from that of respiratory syncytial virus. Virology186, 426–434.

Yun B, Zhang Y, Liu Y, Guan X, Wang Y, Qi X, Cui H, Liu C, Zhang Y, Gao H, Gao L, Li K, Gao Y, Wang X. 2016. TMPRSS12 is an activating protease for subtype B avian metapneumovirus. Journal of Virology90, 11231–11246.

Zhang Y, Liu A, Jiang N, Qi X, Gao Y, Cui H, Liu C, Zhang Y, Li K, Gao L, Wang X, Pan Q. 2022. A novel inactivated bivalent vaccine for chickens against emerging hepatitis-hydropericardium syndrome and infectious bursal disease. Veterinary Microbiology266, 109375.

Zhou X, Wang D, Xiong J, Zhang P, Li Y, She R. 2010. Protection of chickens with or without maternal antibodies against IBDV infection by a recombinant IBDV-VP2 protein. Vaccine28, 3990–3996.

[1] Lingzhai Meng, Mengmeng Yu, Suyan Wang, Yuntong Chen, Yuanling Bao, Peng Liu, Xiaoyan Feng, Tana He, Ru Guo, Tao Zhang, Mingxue Hu, Changjun Liu, Xiaole Qi, Kai Li, Li Gao, Yanping Zhang, Hongyu Cui, Yulong Gao.

A novel live attenuated vaccine candidate protects chickens against subtype B avian metapneumovirus [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1658-1670.

No Suggested Reading articles found!