Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1631-1645    DOI: 10.1016/j.jia.2024.07.022
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Interactions of arsenic and phosphorus in their uptake and transportation in plants: Advances and prospective research on the mechanisms and approaches for alleviating arsenic stress

Ameer Khan1, Farah Kanwal1, Muhammad Shahzad1, Shama Naz1, Sanaullah Jalil1, Guoping Zhang1, 2#

1 Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
2 Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
 Highlights 
Arsenic (As) is a competitor for phosphorus (P) in their uptake and transportation via ion transporters.  
Increasing P supply can reduce As uptake and accumulation in plants.
Identification of the genes encoding transporters with high affinity with P is required for developing the crop cultivars with less As uptake and accumulation.  
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

类金属砷(As)是植物的非必要元素,其过量积累对植物有毒害作用,且经食物链危害人类健康。植物通过多个过程吸收与代谢砷,As5+形式的砷通过磷酸转运体吸收,而甲基化和As3+形式的砷主要通过水孔蛋白通道进入植物体。虽然曾提出过多种减轻植物砷毒害或减少其积累的对策,但它们在有效性以及环境友好等方面存在不足。本文较为系统地综述了As来源、吸收机理、砷磷互作及其对吸收、转运和植物生长和生理活性的影响,内容主要涉及植物在吸收、代谢和耐性上对砷胁迫和磷施加的反应。另外,本文还介绍了通过改善磷营养、操纵磷运转体基因以及优化植物-微生物群落而减少砷毒害和积累的最新进展。最后,简要讨论了今后面临的主要挑战和研究方向。



Abstract  

Metalloid arsenic (As) is not a necessary element for plants, but its excessive accumulation is toxic to plants, and it also poses a great health risk to humans via the food chain.  Plants absorb and metabolize As through a variety of processes.  Arsenate in the form of As5+ is absorbed by phosphate transporters, but methylated As and As3+ enter plant tissues mainly through aquaporin channels.  Various strategies and practices have been proposed and applied to alleviate As toxicity or reduce As accumulation in plants, but an efficient and environment-friendly approach has yet to be developed.  This review comprehensively explores As sources and uptake mechanisms, as well as the interactions of phosphorus (P) and As in their uptake, transportation and influences on plant growth and physiological activities.  This comprehensive review covers the transport, metabolism, and tolerance processes that plants exhibit in response to As stress and the addition of P.  In addition, we also present recent advances in reducing As toxicity and accumulation by improving P nutrition, manipulating P transporter genes and optimizing the plant microbial community.  Finally, the future research directions and main challenges are briefly discussed.  

Keywords:  arsenic uptake       arsenic accumulation        interaction of arsenic and phosphorus        ion transporters        alleviation of As toxicity  
Received: 17 May 2024   Online: 18 July 2024   Accepted: 18 June 2024
Fund: 
This study was supported by the Key Research Foundation of Science and Technology Department of Zhejiang Province, China (2021C02064-3) and the Jiangsu Collaborative Innovation Center for Modern Crop Production, China.
About author:  Ameer Khan, Mobile: +86-13186956563, E-mail: ameer_khan11@outlook.com; #Correspondence Guoping Zhang, Tel: +86-571-88982115, E-mail: zhanggp@zju.edu.cn

Cite this article: 

Ameer Khan, Farah Kanwal, Muhammad Shahzad, Shama Naz, Sanaullah Jalil, Guoping Zhang. 2025.

Interactions of arsenic and phosphorus in their uptake and transportation in plants: Advances and prospective research on the mechanisms and approaches for alleviating arsenic stress
. Journal of Integrative Agriculture, 24(5): 1631-1645.

Aigbe U O, Osibote O A. 2022. Fluoride ions sorption using functionalized magnetic metal oxides nanocomposites: A review. Environmental Science and Pollution Research29, 1–45.

Ali S, Tyagi A, Mushtaq M, Al Mahmoudi H, Bae H. 2022. Harnessing plant microbiome for mitigating arsenic toxicity in sustainable agriculture. Environmental Pollution300, 118940.

Allevato E, Stazi S R, Marabottini R, D’Annibale A. 2019. Mechanisms of arsenic assimilation by plants and countermeasures to attenuate its accumulation in crops other than rice. Ecotoxicology and Environmental Safety185, 109701.

Anawar H M, Rengel Z, Damon P, Tibbett M. 2018. Arsenic-phosphorus interactions in the soil–plant–microbe system. Dynamics of uptake, suppression and toxicity to plants. Environmental Pollution233, 1003–1012.

Anglana C, Capaci P, Barozzi F, Migoni D, Rojas M, Stigliano E, Fanizzi F P, Di Sansebastiano G P, Papadia P. 2023. Dittrichia viscosa selection strategy based on stress produces stable clonal lines for phytoremediation applications. Plants12, 2499.

Bahmani R, Modareszadeh M, Kim D, Hwang S. 2023. Methylcytosine-binding protein VIM1 decreases As (III) accumulation by epigenetic downregulation of the As (III) importer NIP3; 1 in ArabidopsisJournal of Hazardous Materials441, 129987.

Bai Y, Wan X, Lei M, Wang L, Chen T. 2023. Research advances in mechanisms of arsenic hyperaccumulation of Pteris vittata. perspectives from plant physiology, molecular biology, and phylogeny. Journal of Hazardous Materials460, 132463.

Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair M R, Sadeghi M. 2021. Toxic mechanisms of five heavy metals. mercury, lead, chromium, cadmium, and arsenic. Frontiers in Pharmacology12 , 227.

Bali A S, Sidhu G P S. 2021. Arsenic acquisition, toxicity and tolerance in plants - From physiology to remediation: A review. Chemosphere283, 131050.

Banerjee A, Roychoudhury A. 2019. Genetic engineering in plants for enhancing arsenic tolerance. In: Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids. Elsevier, Netherland. pp. 463–475.

Bao T, Damtie M M, yan Wang C, Chen Z, Tao Q, Wei W, Cho K, Yuan P, Frost R L, Ni B J. 2024. Comprehensive review of modified clay minerals for phosphate management and future prospects. Journal of Cleaner Production447, 141425.

Barman S, Mandal D, Ghosh P, Das A, Majumder M, Chatterjee D, Chatterjee D, Saha I, Basu A. 2024. Identification of microbiogeochemical factors responsible for arsenic release and mobilization, and isolation of heavy metal hyper-tolerant bacterium from irrigation well water. a case study in rural Bengal. EnvironmentDevelopment and Sustainability26, 4887–4918.

Bhatla S C, Lal M A. 2023. Sulfur, Phosphorus, and Iron Metabolism, Plant Physiology, Development and Metabolism. Springer, Germany. pp. 335–359.

Billah M, Khan M, Bano A, Hassan T U, Munir A, Gurmani A R. 2019. Phosphorus and phosphate solubilizing bacteria. Keys for sustainable agriculture. Geomicrobiology Journal36, 904–916.

Biswas S, Ganesan M. 2024. Current perspectives of ACR3 (arsenite efflux system) toward the reduction of arsenic accumulation in plants. Journal of Crop Science and Biotechnology27, 1–17.

Bolan N, Mahimairaja S, Kunhikrishnan A, Choppala G. 2013. Phosphorus–arsenic interactions in variable-charge soils in relation to arsenic mobility and bioavailability. Science of the Total Environment463, 1154–1162.

Buu B C, Chan C Y, Lang N T. 2021. Molecular breeding for improving heat stress tolerance in rice: Recent progress and future perspectives. In: Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality. Wiley, Unite States. pp. 92–119.

Cai X, Yin N, Wang P, Du H, Liu X, Cui Y. 2020. Arsenate-reducing bacteria-mediated arsenic speciation changes and redistribution during mineral transformations in arsenate-associated goethite. Journal of Hazardous Materials398, 122886.

Cao G H, Bai X, Zhang C R, Li X G, Dai H Y, Bi Y, Zhang X K, He S. 2023. Physiological response and transcriptome profiling reveal phosphate-mediated amelioration of arsenic accumulation and toxicity in Panax notoginsengEnvironmental and Experimental Botany206, 105136.

Cao Y, Sun D, Chen J X, Mei H, Ai H, Xu G, Chen Y, Ma L Q. 2018. Phosphate transporter PvPht12 enhances phosphorus accumulation and plant growth without impacting arsenic uptake in plants. Environmental Science & Technology52, 3975–3981.

Carey A M, Norton G J, Deacon C, Scheckel K G, Lombi E, Punshon T, Guerinot M L, Lanzirotti A, Newville M, Choi Y. 2011. Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytologist192, 87–98.

Ceasar S A. 2020. Regulation of Low Phosphate Stress in Plants, Plant Life under Changing Environment. Elsevier, Netherland. pp. 123–156.

Chang J D, Gao W, Wang P, Zhao F J. 2022. OsNRAMP5 is a major transporter for lead uptake in rice. Environmental Science & Technology56, 17481–17490.

Cheng H, Hu Y, Luo J, Xu B, Zhao J. 2009. Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. Journal of Hazardous Materials165, 13–26.

Creța C, Horga C, Vlad M, Pănescu V A, Bocoș-Bințințan V, Coman M V, Herghelegiu M C, Berg V, Lyche J L, Beldean-Galea M S. 2024. Water quality and associated human health sisk assessment related to some ions and trace elements in a series of rural roma communities in Transylvania, Romania. Foods13, 496.

Dai C, Dai X, Qu H, Men Q, Liu J, Yu L, Gu M, Xu G. 2022. The rice phosphate transporter OsPHT1; 7 plays a dual role in phosphorus redistribution and anther development. Plant Physiology188, 2272–2288.

Das D, Bhattacharyya S. 2021. Reducing arsenic accumulation in rice using physiology, genetics and breeding. Sustainable Agriculture Reviews, 52, 21–47.

Das S, Chou M L, Jean J S, Yang H J, Kim P J. 2017. Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator Pteris vittataJournal of Hazardous Materials325, 279–287.

Deguchi M, Kane S, Potlakayala S, George H, Proano R, Sheri V, Curtis W R, Rudrabhatla S. 2020. Metabolic engineering strategies of industrial hemp (Cannabis sativa L). A brief review of the advances and challenges. Frontiers in Plant Science11, 580621.

Deng F, Yu M, Martinoia E, Song W Y. 2019. Ideal cereals with lower arsenic and cadmium by accurately enhancing vacuolar sequestration capacity. Frontiers in Genetics10, 450509.

Deng S, Caddell D F, Xu G, Dahlen L, Washington L, Yang J, Coleman Derr D. 2021. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. The ISME Journal15, 3181–3194.

Farooq M A, Islam F, Ali B, Najeeb U, Mao B, Gill R A, Yan G, Siddique K H, Zhou W. 2016. Arsenic toxicity in plants. Cellular and molecular mechanisms of its transport and metabolism. Environmental and Experimental Botany132, 42–52.

Fatima F, Ahmad M, Verma S, Pathak N. 2022. Relevance of phosphate solubilizing microbes in sustainable crop production: A review. International Journal of Environmental Science and Technology19, 9283–9296.

Fatma Z, Schultz J C, Zhao H. 2020. Recent advances in domesticating non-model microorganisms. Biotechnology Progress36, 3008.

Fischer S, Sánchez Bermejo E, Xu X, Flis P, Ramakrishna P, Guerinot M L, Zhao F J, Salt D E. 2021. Targeted expression of the arsenate reductase HAC1 identifies cell type specificity of arsenic metabolism and transport in plant roots. Journal of Experimental Botany72, 415–425.

Frouin J, Labeyrie A, Boisnard A, Sacchi G A, Ahmadi N. 2019. Genomic prediction offers the most effective marker assisted breeding approach for ability to prevent arsenic accumulation in rice grains. PLoS ONE14, 0217516.

Ganie S Y, Javaid D, Hajam Y A, Reshi M S. 2024. Arsenic toxicity: Sources, pathophysiology and mechanism. Toxicology Research13, 111.

Gu Y, Dong K, Geisen S, Yang W, Yan Y, Gu D, Liu N, Borisjuk N, Luo Y, Friman V P. 2020. The effect of microbial inoculant origin on the rhizosphere bacterial community composition and plant growth-promotion. Plant and Soil452, 105–117.

Han B, Wang C, Wu T, Yan J, Jiang A, Liu Y, Luo Y, Cai H, Ding G, Dong X. 2022. Identification of vacuolar phosphate influx transporters in Brassica napusPlantCell & Environment45, 3338–3353.

Han R, Chen J, He S, Dai Z, Liu X, Cao Y, Ma L Q. 2022. Arsenic-induced up-regulation of P transporters PvPht13–14 enhances both As and P uptake in As-hyperaccumulator Pteris vittataJournal of Hazardous Materials438, 129430.

Han Y, White P J, Cheng L. 2022. Mechanisms for improving phosphorus utilization efficiency in plants. Annals of Botany129, 247–258.

Jochum M D, McWilliams K L, Pierson E A, Jo Y K. 2019. Host-mediated microbiome engineering (HMME) of drought tolerance in the wheat rhizosphere. PLoS ONE14, 0225933.

Kalita J, Pradhan A K, Jyoti S Y, Kalita B, Roy S J, Kalita I, Das M, Teronpi H, Regon P, Tanti B. 2024. Translocation and accumulation of arsenic in rice grains. Role of transporters in tolerance and its incorporation in the food chain. In: Arsenic in Rice. Apple Academic Press, United States. pp. 119–142.

Kamiya T, Islam R, Duan G, Uraguchi S, Fujiwara T. 2013. Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Science and Plant Nutrition59, 580–590.

Karle S B, Kumar K. 2024. Rice tonoplast intrinsic protein member OsTIP1;2 confers tolerance to arsenite stress. Journal of Hazardous Materials465, 133078.

Karthika K, Rashmi I, Parvathi M. 2018. Biological functions, uptake and transport of essential nutrients in relation to plant growth. Plant Nutrients and Abiotic Stress Tolerance56, 1–49.

Ke J, Wang B, Yoshikuni Y. 2021. Microbiome engineering: Synthetic biology of plant-associated microbiomes in sustainable agriculture. Trends in Biotechnology39, 244–261.

Khan F, Siddique A B, Shabala S, Zhou M, Zhao C. 2023. Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants12, 2861.

Khanna K, Kohli S K, Kumar P, Ohri P, Bhardwaj R, Alam P, Ahmad P. 2022. Arsenic as hazardous pollutant. Perspectives on engineering remediation tools. Science of the Total Environment838, 155870.

Kumar A, Basu S, Rishu A K, Kumar G. 2022. Revisiting the mechanisms of arsenic uptake, transport and detoxification in plants. Environmental and Experimental Botany194, 104730.

Kumar A, Prasad M N V. 2018. Plant-lead interactions: Transport, toxicity, tolerance, and detoxification mechanisms. Ecotoxicology and Environmental Safety166, 401–418.

Kumar K, Gupta D, Mosa K A, Ramamoorthy K, Sharma P. 2019. Arsenic transport, metabolism, and possible mitigation strategies in plants. In: Plant Metal Interactions. Springer, Germany. pp. 141–168.

Kumar M, Singh S, Maury J, Ahmad I, Kushwaha A S, Shukla J, Gill S S, Tuteja N. 2023. Endogenous factors involved in regulating arsenic uptake and toxicity in plant. In: Biostimulants in Alleviation of Metal Toxicity in Plants. Elsevier, Netherland. pp. 229–242.

Kumari P, Rastogi A, Shukla A, Srivastava S, Yadav S. 2018. Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation in plants. Chemosphere211, 397–406.

Le T T B, Ho H T, Dao T T, Nguyen N T, Tran L T, Ngo L T T, van Nguyen T. 2023. Arsenate reductase gene from Pityrogramma calomelanos L. enhances tolerance to arsenic in tobacco. Notulae Botanicae Horti Agrobotanici Cluj-Napoca51, 12896.

Li M, Liu J, Xu Y, Qian G. 2016. Phosphate adsorption on metal oxides and metal hydroxides: A comparative review. Environmental Reviews24, 319–332.

Liu T Y, Huang T K, Yang S Y, Hong Y T, Huang S M, Wang F N, Chiang S F, Tsai S Y, Lu W C, Chiou T J. 2016. Identification of plant vacuolar transporters mediating phosphate storage. Nature Communications7, 11095.

Majumder S, Joardar M, Das A, De A, Mridha D, Ghosh S, Lama U, Dey A, Chowdhury N R, Majumdar A. 2023. Arsenic toxicity, biomarkers of exposure and risk assessment among different aged young population from endemic areas of West Bengal, India. Groundwater for Sustainable Development23, 101022.

Malabadi R B, Kolkar K, Chalannavar R. 2022. White, and brown rice nutritional value and health benefits: Arsenic toxicity in rice plants. International Journal of Innovation Scientific Research and Review4, 3065–3082.

Malenica N, Dunić J A, Vukadinović L, Cesar V, Šimić D. 2021. Genetic approaches to enhance multiple stress tolerance in maize. Genes, 12, 1760.

Malhotra H, Vandana, Sharma S, Pandey R. 2018. Phosphorus nutrition: Plant growth in response to deficiency and excess. In: Plant Nutrients and Abiotic Stress Tolerance. Springer, Germany. pp. 171–190

Mawia A M, Hui S, Zhou L, Li H, Tabassum J, Lai C, Wang J, Shao G, Wei X, Tang S. 2021. Inorganic arsenic toxicity and alleviation strategies in rice. Journal of Hazardous Materials408, 124751.

Meselhy A G, Mosa K, Chhikara S, Kumar K, Musante C, White J C, Dhankher O P. 2024. Plasma membrane intrinsic protein OsPIP2;6 is involved in root-to-shoot arsenic translocation in rice (Oryza sativa L). Plant Cell Reports43, 64.

Mishra S, Dwivedi S, Mallick S, Tripathi R D. 2019. Redox homeostasis in plants under arsenic stress. In: Redox Homeostasis in Plants: From Signalling to Stress Tolerance. Springer, Germany. pp. 179–198.

Mitra D, Nayeri F D, Sansinenea E, Ortiz A, Bhatta B B, Adeyemi N O, Janeeshma E, Tawfeeq A l Ani L K, Sharma S B, Boutaj H. 2023. Unraveling arbuscular mycorrhizal fungi interaction in rice for plant growth development and enhancing phosphorus use efficiency through recent development of regulatory genes. Journal of Plant Nutrition46, 3184–3220.

Mitra D, Saritha B, Janeeshma E, Gusain P, Khoshru B, Nouh F A A, Rani A, Olatunbosun A N, Ruparelia J, Rabari A. 2022. Arbuscular mycorrhizal fungal association boosted the arsenic resistance in crops with special responsiveness to rice plant. Environmental and Experimental Botany193, 104681.

Młodzińska E, Zboińska M. 2016. Phosphate uptake and allocation a closer look at Arabidopsis thaliana L. and Oryza sativa L. Frontiers in Plant Science7, 1198.

Mondal S, Pramanik K, Ghosh S K, Pal P, Ghosh PK, Ghosh A, Maiti T K. 2022. Molecular insight into arsenic uptake, transport, phytotoxicity, and defense responses in plants: A critical review. Planta255, 87.

Montes-Rocha J A, Alonso-Castro A J, Carranza Álvarez C. 2024. Mechanism of heavy metal induced stress and tolerance. In: Aquatic ContaminationTolerance and Bioremediation. John Wiley & Sons, United States. pp. 1–76.

Mostofa M G, Rahman M M, Nguyen K H, Li W, Watanabe Y, Tran C D, Zhang M, Itouga M, Fujita M, Tran L S P. 2021. Strigolactones regulate arsenate uptake, vacuolar-sequestration and antioxidant defense responses to resist arsenic toxicity in rice roots. Journal of Hazardous Materials415, 125589.

Nworie O E, Qin J, Lin C. 2017. Differential effects of low-molecular-weight organic acids on the mobilization of soil-borne arsenic and trace metals. Toxics5, 18.

Pandey S, Rai R, Rai L C. 2023. Biochemical and molecular basis of arsenic toxicity and tolerance in microbes and plants. In: Handbook of Arsenic Toxicology. Elsevier, Netherland. pp. 709–759.

Pantigoso H A, Yuan J, He Y, Guo Q, Vollmer C, Vivanco J M. 2020. Role of root exudates on assimilation of phosphorus in young and old Arabidopsis thaliana plants. PLoS ONE15, 0234216.

Peng Z, Lin C, Fan K, Ying J, Li H, Qin J, Qiu R. 2024. The use of urea hydrogen peroxide as an alternative N-fertilizer to reduce accumulation of arsenic in rice grains. Journal of Environmental Management349, 119489.

Prodhan M A, Pariasca-Tanaka J, Ueda Y, Hayes P E, Wissuwa M. 2022. Comparative transcriptome analysis reveals a rapid response to phosphorus deficiency in a phosphorus-efficient rice genotype. Scientific Reports12, 9460.

Punshon T, Jackson B P, Meharg A A, Warczack T, Scheckel K, Guerinot M L. 2017. Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Science of the Total Environment581, 209–220.

Raju N J. 2022. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies. Environmental Research203, 111782.

Rawat P, Das S, Shankhdhar D, Shankhdhar S. 2021. Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition21, 49–68.

Raza A, Charagh S, Sadaqat N, Jin W. 2020. Arabidopsis thaliana: Model plant for the study of abiotic stress responses. In: The Plant Family BrassicaceaeBiology and Physiological Responses to Environmental Stresses. Springer, Germany. pp. 129–180.

Raza A, Tabassum J, Zahid Z, Charagh S, Bashir S, Barmukh R, Khan R S A, Barbosa Jr F, Zhang C, Chen H. 2022. Advances in “omics” approaches for improving toxic metals/metalloids tolerance in plants. Frontiers in Plant Science12, 794373.

Riyazuddin R, Nisha N, Ejaz B, Khan M I R, Kumar M, Ramteke P W, Gupta R. 2021. A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules12, 43.

Roch G V, Maharajan T, Krishna T A, Ignacimuthu S, Ceasar S A. 2020. Expression of PHT1 family transporter genes contributes for low phosphate stress tolerance in foxtail millet (Setaria italica) genotypes. Planta252, 98.

Saeed M, Quraishi U M, Landberg T, Greger M, Malik R N. 2024. Phenomic profiling to reveal tolerance mechanisms and regulation of ascorbate glutathione cycle in wheat varieties (Triticum aestivum L.) under arsenic stress. Environmental Geochemistry and Health46, 2.

Saini D K, Kumar S, Kaur R. 2024. Applying genomics resources to accelerate the development of climate resilient crops. In: Adapting to Climate Change in Agriculture-Theories and PracticesApproaches for Adapting to Climate Change in Agriculture in India. Springer, Germany. pp. 43–120.

Samal A C, Bhattacharya P, Biswas P, Maity J P, Bundschuh J, Santra S C. 2021. Variety-specific arsenic accumulation in 44 different rice cultivars (Osativa L.) and human health risks due to co-exposure of arsenic-contaminated rice and drinking water. Journal of Hazardous Materials407, 124804.

Sarwar T, Khan S, Muhammad S, Amin S. 2021. Arsenic speciation, mechanisms, and factors affecting rice uptake and potential human health risk: A systematic review. Environmental Technology & Innovation22, 101392.

Seregin I V, Kozhevnikova A D. 2023. Phytochelatins: Sulfur-containing metal(loid)-chelating ligands in plants. International Journal of Molecular Sciences24, 2430.

Sevak P, Pushkar B. 2024. Arsenic pollution cycle, toxicity and sustainable remediation technologies: A comprehensive review and bibliometric analysis. Journal of Environmental Management349, 119504.

Sharma I, Pandey H, Thakur K, Pandey D. 2022. Phytochelatins and their application in bioremediation. In: Microbial and Biotechnological Interventions in Bioremediation and Phytoremediation. Springer, Germany. pp. 81–109.

Sharma P, Jha A B, Dubey R S. 2021. Arsenic toxicity and tolerance mechanisms in crop plants. In: Handbook of Plant and Crop Physiology. CRC (Chemical & Rubber Company) Press, United States. pp. 831–873.

Shi G, Ma H, Chen Y, Liu H, Song G, Cai Q, Lou L, Rengel Z. 2019. Low arsenate influx rate and high phosphorus concentration in wheat (Triticum aestivum L.): A mechanism for arsenate tolerance in wheat plants. Chemosphere214, 94–102.

Shri M, Dubey S, Dwivedi S, Singh P K, Tripathi R D. 2024. Long-distance translocation mechanism of arsenic from soil to rice grain. In: Arsenic in Rice. Apple Academic Press, United States. pp. 75–94.

Shri M, Singh P K, Kidwai M, Gautam N, Dubey S, Verma G, Chakrabarty D. 2019. Recent advances in arsenic metabolism in plants. current status, challenges and highlighted biotechnological intervention to reduce grain arsenic in rice. Metallomics11, 519–532.

Singh B R, Steinnes E. 2020. Soil and water contamination by heavy metals. In: Soil Processes and Water Quality. Chemical & Rubber Company Press, United States. pp. 233–271.

Singh G K, Singh J, Kaur N. 2024. Microbial mediated measures to regulate arsenic in rice. In: Arsenic in Rice. Apple Academic Press, United States. pp. 207–226.

Singh P, Gupta N, Deoghare P M, Agarwal R. 2024a. Arsenic induced phytotoxicity in rice plants. In: Arsenic in Rice. Apple Academic Press, United States. pp. 95–117.

Singh P, Kumar A, Singh T, Anto S, Indoliya Y, Tiwari P, Behera SK, Chakrabarty D. 2024b. Targeting OsNIP3;1 via CRISPR/Cas9: A strategy for minimizing arsenic accumulation and boosting rice resilience. Journal of Hazardous Materials15, 134325.

Singh S, Srivastava S. 2023. Recent advances in arsenic mitigation in rice through biotechnological approaches. International Journal of Phytoremediation25, 305–313.

Soumya P R, Vengavasi K, Pandey R. 2022. Adaptive strategies of plants to conserve internal phosphorus under P deficient condition to improve P utilization efficiency. Physiology and Molecular Biology of Plants28, 1981–1993.

Stock T J, Warschkow O, Constantinou P C, Bowler D R, Schofield S R, Curson N J. 2024. Single atom control of arsenic incorporation in silicon for high-yield artificial lattice fabrication. Advanced Materials36, 2312282.

Strawn D G. 2018. Review of interactions between phosphorus and arsenic in soils from four case studies. Geochemical Transactions19, 1–13.

Suriyagoda L, Tränkner M, Dittert K. 2022. Growth and nutrition of rice seedlings when phosphorus or silicon was applied to a soil heavily contaminated with both arsenic and cadmium. Journal of Plant Nutrition45, 1849–1865.

Tang X, Zou L, Su S, Lu Y, Zhai W, Manzoor M, Liao Y, Nie J, Shi J, Ma LQ. 2021. Long-term manure application changes bacterial communities in rice rhizosphere and arsenic speciation in rice grains. Environmental Science & Technology55, 1555–1565.

Tang Z, Chen Y, Chen F, Ji Y, Zhao F J. 2017. OsPTR7 (OsNPF81), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain. Plant and Cell Physiology58, 904–913.

Tang Z, Zhao F J. 2021. The roles of membrane transporters in arsenic uptake, translocation and detoxification in plants. Critical Reviews in Environmental Science and Technology51, 2449–2484.

Thounaojam T C, Khan Z, Upadhyaya H. 2020. Molecular physiology of arsenic uptake, transport, and metabolism in rice. In: Arsenic in Drinking Water and Food. Springer, Germany. pp. 391–410.

Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi R D, Trivedi P K. 2014. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMPOsNRAMP 1, in arsenic transport and tolerance. PlantCell & Environment37, 140–152.

Upadhyaya G, Roychoudhury A. 2022. Arsenic toxicity and tolerance: Phytochelatin mediated detoxification and genetic engineering based remediation. In: Global Arsenic HazardEcotoxicology and Remediation. Springer, Germany. pp. 481–508.

Verma S, Kumar N, Verma A, Singh H, Siddique K H, Singh N P. 2020. Novel approaches to mitigate heat stress impacts on crop growth and development. Plant Physiology Reports25, 627–644.

Victor Roch G, Maharajan T, Ceasar S A, Ignacimuthu S. 2019. The role of PHT1 family transporters in the acquisition and redistribution of phosphorus in plants. Critical Reviews in Plant Sciences38, 171–198.

Wang C, Yue W, Ying Y, Wang S, Secco D, Liu Y, Whelan J, Tyerman S D, Shou H. 2015. Rice SPX-major facility superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice. Plant Physiology169, 2822–2831.

Wang R, Guo Y, Song Y, Guo Y, Wang X, Yuan Q, Ning Z, Liu C, Zhou L, Zheng G. 2023. Remediating flooding paddy soils with schwertmannite greatly reduced arsenic accumulation in rice (Oryza sativa L.) but did not decrease the utilization efficiency of P fertilizer. Environmental Pollution324, 121383.

Wang Y, Chen Y F, Wu W H. 2021a. Potassium and phosphorus transport and signaling in plants. Journal of Integrative Plant Biology63, 34–52.

Wang Y, Wang F, Lu H, Liu Y, Mao C. 2021b. Phosphate uptake and transport in plants: An elaborate regulatory system. Plant and Cell Physiology62, 564–572.

Wang Z, Rossman T G. 2023. The carcinogenicity of arsenic, toxicology of metals. In: Toxicology of Metals. CRC (Chemical and Rubber Company) Press, United States. pp. 221–229.

Wu J, Liang J, Björn LO, Li J, Shu W, Wang Y. 2022. Phosphorus-arsenic interaction in the ‘soil–plant–microbe’ system and its influence on arsenic pollution. Science of the Total Environment802, 149796.

Xie M Y, Tian Z H, Yang X L, Liu B-H, Yang J, Lin H H. 2019. The role of OsNLA1 in regulating arsenate uptake and tolerance in rice. Journal of Plant Physiology236, 15–22.

Xu Z, Wang W X, Xu L, Yi K K. 2018. Research progress in molecular mechanism of rice phosphorus uptake and translocation. Journal of Plant Nutrition and Fertilizers24, 1378–1385.

Xue C, Li W, Shen R, Lan P. 2023. Impacts of iron on phosphate starvation-induced root hair growth in ArabidopsisPlantCell & Environment46, 215–238.

Yu Z, Xu X, Guo L, Jin R, Lu Y. 2024. Uptake and transport of micro/nanoplastics in terrestrial plants: Detection, mechanisms, and influencing factors. Science of the Total Environment907, 168155.

Zeng F, Nazir M M, Ahmed T, Noman M, Ali S, Rizwan M, Alam M S, Lwalaba J LW, Zhang G. 2023. Calcium and L-glutamate present the opposite role in managing arsenic in barley. Environmental Pollution321, 121141.

Zeng X, Bai L, Gao X, Shan H, Wu C, Su S. 2021. Agricultural planning by selecting food crops with low arsenic accumulation to efficiently reduce arsenic exposure to human health in an arsenic-polluted mining region. Journal of Cleaner Production308, 127403.

Zhang J, Liu J, Zheng F, Yu M, Shabala S, Song W Y. 2022. Comparative analysis of arsenic transport and tolerance mechanisms. Evolution from prokaryote to higher plants. Cells11, 2741.

Zhao F J, Wang P. 2020. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant and Soil446, 1–21.

Zulfiqar F, Ashraf M. 2022. Antioxidants as modulators of arsenic-induced oxidative stress tolerance in plants: An overview. Journal of Hazardous Materials427, 127891.

Zvobgo G, Lwalaba J LW, Sagonda T, Mapodzeke J M, Muhammad N, Shamsi I H, Zhang G P. 2019. Alleviation of arsenic toxicity by phosphate is associated with its regulation of detoxification, defense, and transport gene expression in barley. Journal of Integrative Agriculture18, 381–394.

No related articles found!
No Suggested Reading articles found!