Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (3): 938-951    DOI: 10.1016/j.jia.2024.09.007
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Enhancing yield of modern maize (Zea mays L.) hybrids through optimization of population photosynthetic capacity and light-nitrogen use efficiency under high planting density

Zhenlong Wang1, Pin He2, Xuyao Li1, Tieshan Liu3, Saud Shah4, Hao Ren1, Baizhao Ren1, Peng Liu1, Jiwang Zhang1, Bin Zhao1#

1 College of Agronomy, Shandong Agricultural University, Tai’an 271018, China

2 Seed Station of Tianshui Agriculture and Rural Bureau, Tianshui Agriculture and Rural Bureau, Tianshui 741000, China

3 Shandong Academy of Agricultural Sciences, Jinan 250100, China

4 College of Life Science, Linyi University, Linyi 276000, China

 Highlights 
Modern maize hybrids exhibit optimized population characteristics under high density, though the potential for further genetic enhancement narrows.
Modern hybrids retain enhanced photosynthetic capacity under high density and during the mid-reproductive stage.
Over successive breeding eras, maize photosynthetic nitrogen use efficiency under high-density conditions has increased significantly, driving progressive gains in grain yield over time.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

由于玉米生产中耐密抗倒伏品种的育,密植已成为玉米高产稳产的有效手段,而优良的杂交种是玉米生产中合理密植的前提。然而,中国不同年代主推的玉米杂交种提高耐密性的光合作用机理尚不清楚。本研究旨在探究40年来增强不同密度下的玉米光合性状所做出的育种努力,阐明提高玉米杂交种耐密性的生理生态机制。我们在2019年、2020年和2021年开展了为期3年的研究。我们将1970年到2009中国主要推广的8个主要杂交种分为4个年代,在3种植密度(45000D1)、67500D2)和90000D3·hm-2)下进行了比较。在高密度下,现代杂交种的冠层结构和叶片光合性能与老杂交种相比更为合理,比叶氮略有下降。在所有处理中,现代杂交种(2000年代)在D3密度下能保持较高的净光合速率和光合氮利用效率(PNUE),因此籽粒产量(GY)最高,老杂交种(1970年代)相比提了118.47%。花后叶面积持续时间、叶绿素总含量、光合关键酶活性和PS光化学最大效率均与GY呈正相关,其中PNUEGY的相关性更为显著,是玉米杂交种优化的关键指标。基于以上结果,育种工作者应继续在逆境和高密度条件下进行杂交种选育,注重群体结构的优化和光合能力的持续提高,寻找最佳叶片含氮量状态,从而选育出高产、耐密植的杂交种,使玉米GY持续提高。



Abstract  

In maize production, the development of density-tolerant and lodging-resistant varieties has made dense planting an effective strategy for achieving high and stable yields, with superior hybrids serving as a prerequisite for successful high-density cultivation.  However, the photosynthetic mechanisms underlying improved density tolerance in maize hybrids released across different eras in China remain unclear.  This study investigates 40 years of breeding progress toward enhanced photosynthetic traits under varying planting densities and elucidates the physiological and ecological bases of improved density tolerance in maize hybrids.  A three-year field experiment was conducted from 2019 to 2021 to compare eight major Chinese hybrids from four decadal cohorts under three planting densities: 45,000 (D1), 67,500 (D2), and 90,000 (D3) plants ha−1.  At high density (D3), modern hybrids exhibited a more optimal canopy architecture and superior leaf photosynthetic performance compared to older hybrids, despite a slight reduction in specific leaf nitrogen.  Notably, modern hybrids (2000s) were able to maintain higher net photosynthetic rates and photosynthetic nitrogen use efficiency (PNUE) at D3, resulting in the highest grain yield (GY), which was 118.47% greater than that of older hybrids (1970s).  Leaf area duration after anthesis, total chlorophyll content, key photosynthetic enzyme activities, and maximum quantum efficiency of PSII photochemistry were all positively correlated with GY.  Among these, PNUE showed the strongest correlation with grain yield and thus represents a key indicator for optimizing maize hybrids.  Based on these findings, breeders should continue selecting hybrids under high-density and suboptimal conditions, focusing on optimizing population architecture and enhancing photosynthetic capacity while fine-tuning leaf nitrogen status to develop high-yielding, density-tolerant hybrids capable of sustaining long-term increases in maize grain yield.

Keywords:  maize hybrids       planting density        photosynthetic characteristics        photosynthetic N use efficiency        grain yield  
Received: 16 April 2024   Accepted: 04 July 2024 Online: 14 September 2024  
Fund: 

The authors are grateful to the reviewers and editors for their constructive review and suggestions for this paper.  This work was supported by the National Natural Science Foundation of China (32071960) and the National Key Research and Development Program of China (2018YFD0300603).

About author:  Zhenlong Wang, E-mail: 2022110018@sdau.edu.cn; #Correspondence Bin Zhao, E-mail: zhaobin@sdau.edu.cn

Cite this article: 

Zhenlong Wang, Pin He, Xuyao Li, Tieshan Liu, Saud Shah, Hao Ren, Baizhao Ren, Peng Liu, Jiwang Zhang, Bin Zhao. 2026. Enhancing yield of modern maize (Zea mays L.) hybrids through optimization of population photosynthetic capacity and light-nitrogen use efficiency under high planting density. Journal of Integrative Agriculture, 25(3): 938-951.

Antonietta M, Fanello D D, Acciaresi H A, Guiamet J J. 2014. Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina. Field Crops Research155, 111–119.

Assefa Y, Prasad P V, Carter P, Hinds M, Bhalla G, Schon R, Jeschke M, Paszkiewicz S, Ciampitti I A. 2016. Yield responses to planting density for US modern corn hybrids: A synthesis-analysis. Crop Science, 56, 2802–2817.

Badu-Apraku B, Fakorede M A B, Oyekunle M. 2014. Agronomic traits associated with genetic gains in maize yield during three breeding eras in West Africa. Maydica59, 49–57.

Brekke B, Edwards J, Knapp A. 2011. Selection and adaptation to high plant density in the Iowa Stiff Stalk Synthetic maize (Zea mays L.) population. Crop Science51, 1965–1967.

Cao Y J, Wang L C, Gu W R, Wang Y J, Zhang J H. 2021. Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density. Journal of Integrative Agriculture20, 494–510.

Cardwell V B. 1982. Fifty years of Minnesota corn production: Sources of yield increase. Agronomy Journal74, 984–990.

Chen K R, Camberato J J, Vyn T J. 2017. Maize grain yield and kernel component relationships to morphophysiological traits in commercial hybrids separated by four decades. Crop Science57, 1641–1657.

Ci X K, Li M S, Xu J S, Lu Z Y, Bai P F, Ru G L, Liang X L, Zhang D G, Li X H, Bai L, Xie C X, Hao Z F, Zhang S H, Dong S T. 2011. Trends of grain yield and plant traits in Chinese maize cultivars from the 1950s to the 2000s. Euphytica185, 395–406.

Debruin J L, Schussler J R, Mo H, Cooper M. 2017. Grain yield and nitrogen accumulation in maize hybrids released during 1934 to 2013 in the US Midwest. Crop Science57, 1431–1446.

Demmig-Adams B, Adams III W W, Baker D H, Logan B A, Bowling D R, Verhoeven A S. 1996. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum98, 253–264.

Ding L, Wang K J, Jiang G M, Liu M Z, Niu S L, Gao L M. 2005. Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field Crops Research93, 108–115.

Dong S T, Wang K J, Hu C H. 2000. Development of canopy apparent photosynthesis among maize varieties from different eras. Acta Agronomica Sinica26, 200–204. (in Chinese)

Duan X M. 2005. Some advice on corn breeding obtained from the elite varieties of Nongda 108 and Zhengdan 958. Journal of Maize Sciences13, 49–52. (in Chinese)

Duvick D N. 2005. The contribution of breeding to yield advances in maize (Zea mays L.). Advances in Agronomy86, 83–145.

Elli E F, Edwards J, Yu J M, Trifunovic S, Eudy D M, Kosola K R, Schnable P S, Lamkey K R, Archontoulis S V. 2023. Maize leaf angle genetic gain is slowing down in the last decades. Crop Science, 63, 3520–3533.

Fan P P, Anten N P R, Evers J B, Li Y Y, Li S K, Ming B, Xie R Z. 2024. Higher yields of modern maize cultivars are not associated with coordinated light and N distribution within the canopy. Field Crops Research305, 109182.

Fan P P, Ming B, Evers J B, Li Y Y, Li S K, Xie R Z, Anten N P R. 2023. Nitrogen availability determines the vertical patterns of accumulation, partitioning, and reallocation of dry matter and nitrogen in maize. Field Crops Research297, 108927.

Feller U, Anders I, Mae T. 2008. Rubiscolytics: Fate of Rubisco after its enzymatic function in a cell is terminated. Journal of Experimental Botany59, 1615–1624.

Feng P, Shen X H, Zheng H Y, Zhang H, Li Z J, Yang H K, Li M S. 2014. Effects of planting density on kernel filling and dehydration characteristics for maize hybrids. Chinese Agricultural Science Bulletin30, 92–100. (in Chinese)

Frei O M. 2000. Changes in yield physiology of corn as a result of breeding in Northern Europe. Maydica45, 173–183.

Fu W, Wang Y, Ye Y L, Zhen S, Zhou B H, Wang Y, Hu Y J, Zhao Y N, Huang Y F. 2020. Grain yields and nitrogen use efficiencies in different types of stay-green maize in response to nitrogen fertilizer. Plants9, 474.

Griffin J J, Ranney T G, Pharr D M. 2004. Photosynthesis, chlorophyll fluorescence, and carbohydrate content of illicium taxa grown under varied irradiance. Journal of the American Society for Horticultural Science129, 46–53.

Guo X X, Liu W M, Yang Y S, Liu G Z, Ming B, Xie R Z, Wang K R, Li S K, Hou P. 2025. Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency. Journal of Integrative Agriculture24, 1424–1435.

Guo Y, Yin W, Fan H, Fan Z L, Hu F L, Yu A Z, Zhao C, Chai Q, Aziiba E A, Zhang X J. 2021. Photosynthetic physiological characteristics of water and nitrogen coupling for enhanced high-density tolerance and increased yield of maize in arid irrigation regions. Frontiers in Plant Science12, 726568.

He P, Ding X P, Bai J, Zhang J W, Liu P, Ren B Z, Zhao B. 2022. Maize hybrid yield and physiological response to plant density across four decades in China. Agronomy Journal114, 2886.

Hikosaka K. 2014. Optimal nitrogen distribution within a leaf canopy under direct and diffuse light. PlantCell & Environment37, 2077–2085.

Huang G M, Liu Y R, Guo Y L, Peng C X, Tan W M, Zhang M C, Li Z H, Zhou Y Y, Duan L S. 2021. A novel plant growth regulator improves the grain yield of high-density maize crops by reducing stalk lodging and promoting a compact plant type. Field Crops Research260, 107982.

Jafari F, Wang B B, Wang H Y, Zhou J J. 2024. Breeding maize of ideal plant architecture for high-density planting tolerance through modulating shade avoidance response and beyond. Journal of Integrative Plant Biology66, 849–864.

Lacasa J, Ciampitti I A, Amas J I, Curín F, Luque S F, Otegui M E. 2022. Breeding effects on canopy light attenuation in maize: A retrospective and prospective analysis. Journal of Experimental Botany73, 1301–1311.

Laurance W F, Sayer J, Cassman K G. 2014. Agricultural expansion and its impacts on tropical nature. Trends in Ecology & Evolution29, 107–116.

Li R F, Liu P, Dong S T, Zhang J W, Zhao B. 2019. Increased maize plant population induced leaf senescence, suppressed root growth, nitrogen uptake, and grain yield. Agronomy Journal111, 1581–1591.

Li S K, Wang K R, Xie R Z, Hou P, Ming B, Yang X X, Han D S, Wang Y H. 2016. Implementing higher population and full mechanization technologies to achieve high yield and high efficiency in maize production. Crops4, 1–6. (in Chinese)

Li T, Liu L N, Jiang C D, Liu Y J, Shi L. 2014. Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum. Journal of Photochemistry and Photobiology (Biology), 137, 31–38.

Liu G Z, Hou P, Xie R Z, Ming B, Wang K R, Xu W J, Liu W M, Yang Y S, Li S K. 2017. Canopy characteristics of high-yield maize with yield potential of 22.5 Mg ha–1Field Crops Research213, 221–230.

Liu G Z, Yang Y S, Liu W M, Guo X X, Xie R Z, Ming B, Xue J, Zhang G Q, Li R F, Wang K R, Hou P, Li S K. 2022. Optimized canopy structure improves maize grain yield and resource use efficiency. Food and Energy Security11, e375.

Long C Z. 2019. Effect of planting density on yield and major agronomic traits of maize varieties. Seed Science & Technology37, 9–15. (in Chinese)

Luo N, Meng Q F, Feng P Y, Qu Z R, Yu Y H, Liu D L, Müller C, Wang P. 2023. China can be self-sufficient in maize production by 2030 with optimal crop management. Nature Communications14, 2637.

Ma D, Xie R, Niu X, Li S, Long H, Liu Y. 2014. Changes in the morphological traits of maize genotypes in China between the 1950s and 2000s. European Journal of Agronomy58, 1–10.

Ma D L, Xie R Z, Yu X F, Li S K, Gao J L. 2022. Historical trends in maize morphology from the 1950s to the 2010s in China. Journal of Integrative Agriculture21, 2159–2167.

Makoi J H J R, Chimphango S B M, Dakora F D. 2010. Photosynthesis, water-use efficiency and δ13C of five cowpea genotypes grown in mixed culture and at different densities with sorghum. Photosynthetica48, 143–155.

Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. 2010. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Annals of Botany105, 1141–1157.

Di Matteo J A, Ferreyra J M, Cerrudo A A, Echarte L, Andrade F H. 2016. Yield potential and yield stability of argentine maize hybrids over 45 years of breeding. Field Crops Research197, 107–116.

McCullough D E, Giradin P, Mihajlovic M, Aguilera A, Tollenaar M. 1994. Influence of N supply on development and dry matter accumulation of an old and new maize hybrid. Canadian Journal of Plant Science74, 471–477.

Moreau D, Allard V, Gaju O, Le Gouis J, Foulkes M J, Martre P. 2012. Acclimation of leaf nitrogen to vertical light gradient at anthesis in wheat is a whole-plant process that scales with the size of the canopy. Plant Physiology160, 1479–1490.

Mu X, Chen Q, Chen F, Yuan L, Mi G. 2016. Within-leaf nitrogen allocation in adaptation to low nitrogen supply in maize during grain-filling stage. Frontiers in Plant Science7, 699.

Niu X, Xie R, Liu X, Zhang F, Li S, Gao S. 2013. Maize yield gains in northeast china in the last six decades. Journal of Integrative Agriculture12, 630–637.

Pagano E, Cela S, Maddonni G A, Otegui M E. 2007. Intra-specific competition in maize: Ear development, flowering dynamics and kernel set of early-established plant hierarchies. Field Crops Research102, 198–209.

Qian C J, Zhang W, Zhong X M, Li F H, Shi Z S. 2017. Comparative studies on the photosynthetic characteristics of two maize (Zea mays L.) near-isogenic lines differing in their susceptibility to low light intensity. Emirates Journal of Food and Agriculture29, 300–311.

Ren B Z, Cui H Y, Camberato J J, Dong S T, Liu P, Zhao B, Zhang J W. 2016. Effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of summer maize. The Science of Nature103, 67.

Ren B Z, Li L L, Dong S T, Liu P, Zhao B, Zhang J W. 2017a. Photosynthetic characteristics of summer maize hybrids with different plant heights. Agronomy Journal109, 1454–1462.

Ren B Z, Liu W, Zhang J W, Dong S T, Liu P, Zhao B. 2017b. Effects of plant density on the photosynthetic and chloroplast characteristics of maize under high-yielding conditions. The Science of Nature104, 12.

Russell W A. 1991. Genetic improvement of maize yields. Advances in Agronomy46, 245–298.

Sangoi L, Gracietti M A, Rampazzo C, Bianchetti P. 2002. Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Research79, 39–51.

Sarlangue T, Andrade F H, Calvino P A, Purcell L C. 2007. Why do maize hybrids respond differently to variations in plant density? Agronomy Journal99, 984–991.

Song Q F, Wang Y, Qu M N, Ort D R, Zhu X G. 2017. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency - Development of a new canopy photosynthesis model scaling from metabolism to canopy level processes. PlantCell & Environment40, 2946–2957.

Tazoe Y, Noguchi K, Terashima I. 2005. Effects of growth light and nitrogen nutrition on the organization of the photosynthetic apparatus in leaves of a C4 plant, Amaranthus cruentusPlantCell & Environment29, 691–700.

Tokatlidis I S, Koutroubas S D. 2004. A review of maize hybrids dependence on high plant populations and its implications for crop yield stabilityField Crops Research88, 103–114.

Tollenaar M, Lee E A. 2002. Yield potential, yield stability and stress tolerance in maize. Field Crops Research75, 161–169.

Tollenaar M, Wu J. 1999. Yield improvement intemperate maize is attributable to greater stress tolerance. Crop Science39, 1597–1604.

Uribelarrea M, Crafts-Brandner S, Below F. 2009. Physiological N response of field-grown maize hybrids (Zea mays L.) with divergent yield potential and grain protein concentration. Plant & Soil316, 151–160.

Vandeleur R K, Gill G S. 2004. The impact of plant breeding on the grain yield and competitive ability of wheat in Australia. Australian Journal of Agricultural Research55, 855–861.

Wang K J, Dong S T, Hu C H, Liu K C, Sun Q Q. 2001. Improvement in photosynthetic characteristics among maize varieties in China from the 1950s to the 1990s. Chinese Journal of Plant Ecology25, 247–251. (in Chinese)

Wang X H, Müller C, Elliot J, Mueller N D, Ciais P, Jägermeyr J, Gerber J, Dumas P, Wang C Z, Yang H, Li L, Deryng D, Folberth C, Liu W F, Makowski D, Olin S, Pugh T A M, Reddy A, Schmid E, Jeong S, et al. 2021. Global irrigation contribution to wheat and maize yield. Nature Communications12, 1235.

Wang Y W, Xu C, Li K, Cai X J, Wu M, Chen G X. 2017. Fe deficiency induced changes in rice (Oryza sativa L.) thylakoids. Environmental Science & Pollution Research24, 1380–1388.

Wang Z C, Kang S Z, Jensen C R, Liu F L. 2012. Alternate partial root-zone irrigation reduces bundle-sheath cell leakage to CO2 and enhances photosynthetic capacity in maize leaves. Journal of Experimental Botany63, 1145–1153.

Weiner J, Andersen S B, Wille W K M, Griepentrog H W, Olsen J M. 2010. Evolutionary agroecology: The potential for cooperative, high density, weed-suppressing cereals. Evolutionary Application3, 473–479.

Yan Y Y, Niu L, Li J, Hou P, Dai T B, Li S K, Zhou W B. 2019. Yield and photosynthetic characteristics of high-yielding maize varieties in response to density. In: 2019 Annual Academic Conference of the Crop Society of China. China. (in Chinese)

Yang Z, Chai Q, Wang Y, Gou Z W, Fan Z L, Hu F L, Yin W. 2022. Compensation of green manure on photosynthetic source and yield loss of wheat caused by reduced irrigation in Hexi oasis irrigation area. Journal of Plant Nutrition Fertilizers28, 1003–1014. (in Chinese)

Yao H S, Zhang Y L, Yi X P, Zhang X J, Zhang W F. 2016. Cotton responds to different plant population densities by adjusting specific leaf area to optimize canopy photosynthetic use efficiency of light and nitrogen. Field Crops Research188, 10–16.

Yin L J, Xu H C, Dong S X, Chu J P, Dai X L, He M R. 2019. Optimised nitrogen allocation favours improvement in canopy photosynthetic nitrogen-use efficiency: Evidence from late-sown winter wheat. Environmental & Experimental Botany159, 75–86.

Yin W, Chai Q, Fan Z L, Hu F L, Zhao L H, Fan H, He W, Zhao C, Yu A Z, Sun Y L, Wang F. 2025. Review on physiological and ecological characteristics and agronomic regulatory pathways of intercropping to delay root and canopy senescence of crops. Journal of Integrative Agriculture24, 1–22.

Yu N N, Ren B Z, Zhao B, Liu P, Zhang J W. 2021. Leaf-nitrogen status affects grain yield formation through modification of spike differentiation in maize. Field Crops Research271, 108238.

Yu N N, Ren B Z, Zhao B, Liu P, Zhang J W. 2022. Optimized agronomic management practices narrow the yield gap of summer maize through regulating canopy light interception and nitrogen distribution. European Journal of Agronomy137, 126520.

Zhai L C, Xie R Z, Wang P, Liu G Z, Fan P P, Li S K. 2016. Impact of recent breeding history on the competitiveness of Chinese maize hybrids. Field Crops Research191, 75–82.

Zhao Z H, Yang M, Yang L M, Yuan Q, Chi X Y, Liu W P. 2020. Predicting the spread of forest diseases and pests. IEEE Access8, 199803–199812.

Zhang M, Chen T, Hojatollah L, Feng X M, Cao T H, Qian C R, Deng A X, Song Z W, Zhang W J. 2018. How plant density affects maize spike differentiation, kernel set, and grain yield formation in Northeast China? Journal of Integrative Agriculture17, 1745–1757.

Zhang R Y, Xu G, Li J S, Yan J B, Li H H, Yang X H. 2018. Patterns of genomic variation in Chinese maize inbred lines and implications for genetic improvement. Theoretical and Applied Genetics131, 1207–1221.

Zhang X D, Yang L C, Xue X K, Kamran M, Ahmad I, Dong Z Y, Liu T N, Jia Z K, Zhang P, Han Q F. 2019. Plastic film mulching stimulates soil wet–dry alternation and stomatal behavior to improve maize yield and resource use efficiency in a semi-arid region. Field Crops Research233, 101–113.

Zhang Z M, Liu F M, Liu X Y. 1998. Genetic contributions to kernel yield and yield components of hybrid maize, 1963 to 1993 in Henan Province. Acta Agronomica Sinica24, 182–186. (in Chinese)

Zhang Z X. 1986. Determination of plant chlorophyll content, acetone–ethanol mixture method. Liaoning Agricultural Sciences21, 28–30. (in Chinese)

[1] Yunrui Chen, Dayong Fan, Ziliang Li, Yujie Zhang, Yang He, Minzhi Chen, Wangfeng Zhang, Yali Zhang. Critical role of outside xylem hydraulic conductance in regulating stomatal conductance and water use efficiency in cotton across different planting densities[J]. >Journal of Integrative Agriculture, 2026, 25(3): 965-976.
[2] Zichen Liu, Liyan Shang, Shuaijun Dai, Jiayu Ye, Tian Sheng, Jun Deng, Ke Liu, Shah Fahad, Xiaohai Tian, Yunbo Zhang, Liying Huang. Optimizing nitrogen application and planting density improves yield and resource use efficiency via regulating canopy light and nitrogen distribution in rice[J]. >Journal of Integrative Agriculture, 2026, 25(1): 81-91.
[3] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[4] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[5] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[6] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
No Suggested Reading articles found!