Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (11): 3751-3762    DOI: 10.1016/j.jia.2024.08.019
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Intergeneric chromosome-specific painting reveals differential chromosomal transmission from Tripidium arundinaceum in sugarcane progeny

Fan Yu1*, Zehuai Yu1*, Jin Chai2*, Xikai Yu 1, Chen Fu3, Xinwang Zhao1, 2, 4, Hailong Chang3, Jiawei Lei2, Baoshan Chen1, Wei Yao1, Muqing Zhang1#, Jiayun Wu3#, Qinnan Wang3#, Zuhu Deng1, 2, 4#

1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Key Laboratory for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China

2 National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China

3 Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China

4 Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs/Fujian Agriculture and Forestry University, Fuzhou 350002, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

甘蔗近年来作为糖和生物乙醇的原料引起了越来越多的关注,提高它的产量对保证食糖安全和生物能源生产至关重要。属间远缘杂交是作物产生遗传变异的高效途径之一尤其是高倍体作物甘蔗。斑茅因其具有许多优良的农艺性状,已被广泛研究用于改良甘蔗的抗旱性和其它抗逆性。然而,甘蔗属物种和斑茅间的亲缘关系以及甘蔗杂交后代中斑茅染色体的组成都清晰。与先前利用叶绿体基因组DNA进行的遗传分析不同,本研究基于不同物种全基因组单核苷酸多态性明确了斑茅与甘蔗的亲缘关系比高粱更近。此外,利用热带种基因组设计的寡核苷酸染色体特异涂染探针能够清晰地识别斑茅的染色体。本研究首次建立寡聚核苷酸基因组原位杂交体系,用于检测甘蔗杂交后代中斑茅染色体的易位和单条染色体遗传。值得注意的是,我们发现在BC1子代中斑茅的染色体出现了n, 2n和超2n遗传方式。这些遗传方式的不同可能是由于减数第一次分裂染色体加倍、减数第一次分裂第二次分裂染色体加倍减数第二次分裂姐妹染色单体不分离所导致的。这些结果将为进一步选择斑茅染色体进行甘蔗遗传改良提供重要依据。



Abstract  
Sugarcane has recently attracted increasing attention for its potential as a source of sugar and bioethanol, so increasing its yield is essential to ensure the sugar security and bioenergy production.  Intergeneric hybridization is a highly efficient method to produce new genetic variants of crop plants, particularly those species with high ploidy such as sugarcane (Saccharum spp.).  Tripidium arundinaceum exhibits many desirable agronomic traits, and has been widely studied to produce hybrids with improved stress tolerance and other characteristics in sugarcane breeding.  However, the genetic relationship between Tarundinaceum and Saccharum species, and the individual Tarundinaceum chromosomal compositions in sugarcane hybrids are still elusive.  Here we used whole-genome single-nucleotide polymorphisms (SNPs) to ascertain the phylogenetic relationships between these species and found that Tarundinaceum is more closely related to Saccharum than Sorghum, in contrast to the previous narrow genetic analyses using chloroplast DNA.  Additionally, oligonucleotide (oligo)-based chromosome-specific painting derived from Saccharum officinarum was able to distinctly identify the chromosomes of Tarundinaceum.  We developed the oligo-genomic in situ hybridization (GISH) system for the first time, to unveil the novel chromosome translocations and the transmission of individual Tarundinaceum chromosomes in sugarcane progeny.  Notably, we discovered that the chromosomal transmission of T. arundinaceum exhibited several different inheritance modes, including n, 2n, and over 2n in the BC1 progenies.  Such inheritance patterns may have resulted from first division restitution (FDR) or FDR+nondisjunction of a chromosome with the sister chromatids in the second meiosis division/second division restitution (FDR+NSC/SDR) model during meiosis.  These results will be of substantial benefit for the further selection of T. arundinaceum chromosomes for sugarcane genetic improvement.


Keywords:  sugarcane       Tripidium arundinaceum        chromosome painting        Oligo-FISH        chromosomal transmission  
Received: 02 May 2023   Accepted: 17 June 2024
Fund: 
This research was funded by the Central Government and Local Science and Technology Development Special Project, China (2022L3086) and the Sugarcane Research Foundation of Guangxi University, China (2022GZB006).  This project was also supported by the National Natural Science Foundation of China (31771863), the Academy of Sugarcane and Sugar Industry, Guangxi University, China (ASSI-2023009), an independent fund of Guangxi Key Laboratory of Sugarcane Biology, China (GXKLSCB-20190201) and the China Agriculture Research System of MOF and MARA (CARS-20-1-5).
About author:  Fan Yu, E-mail: yufanky@163.com; Zehuai Yu, E-mail: arhuay_yu@163.com; Jin Chai, E-mail: CJ1152648@163.com; #Correspondence Zuhu Deng, E-mail: dengzuhu@163.com; Qinnan Wang, E-mail: wangqinnan66@163.com; Jiayun Wu, E-mail: jiayunng@163.com; Muqing Zhang, E-mail: zmuqing@163.com *These authors contributed equally to this study.

Cite this article: 

Fan Yu, Zehuai Yu, Jin Chai, Xikai Yu, Chen Fu, Xinwang Zhao, Hailong Chang, Jiawei Lei, Baoshan Chen, Wei Yao, Muqing Zhang, Jiayun Wu, Qinnan Wang, Zuhu Deng. 2024. Intergeneric chromosome-specific painting reveals differential chromosomal transmission from Tripidium arundinaceum in sugarcane progeny. Journal of Integrative Agriculture, 23(11): 3751-3762.

Ahmad F, Comeau A. 1990. Wheat×pearl millet hybridization: consequence and potential. Euphytica50, 181–190.

Albert P S, Zhang T, Semrau K, Rouillard J M, Kao Y H, Wang C R, Danilova T V, Jiang J, Birchler J A. 2019. Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proceedings of the National Academy of Sciences of the United States of America116, 1679–1685.

Augustine S M, Syamaladevi D P, Premachandran M N, Ravichandran V, Subramonian N. 2015. Physiological and molecular insights to drought responsiveness in Erianthus spp. Sugar Tech17, 121–129.

Beliveau B J, Joyce E F, Apostolopoulos N, Yilmaz F, Fonseka C Y, Mccole R B, Chang Y, Li J B, Senaratne T N, Williams B R, Rouillard J M, Wu C T. 2012. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proceedings of the National Academy of Sciences of the United States of America109, 21301–21306.

Besse P, Mcintyre C L, Berding N. 1997. Characterisation of Erianthus sect. Ripidium and Saccharum germplasm (Andropogoneae-Saccharinae) using RFLP markers. Euphytica93, 283–292.

Besse P, Taylor G, Carroll B, Berding N, Burner D, Mcintyre C L. 1998. Assessing genetic diversity in a sugarcane germplasm collection using an automated AFLP analysis. Genetica104, 143–153.

Braz G T, Do Vale Martins L, Zhang T, Albert P S, Birchler J A, Jiang J. 2020a. A universal chromosome identification system for maize and wild Zea species. Chromosome Research28, 183–194.

Braz G T, He L, Zhao H, Zhang T, Semrau K, Rouillard J M, Torres G A, Jiang J. 2018. Comparative Oligo-FISH mapping: An efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics208, 513–523.

Braz G T, Yu F, Do Vale Martins L, Jiang J. 2020b. Fluorescent in situ hybridization using oligonucleotide-based probes. Methods in Molecular Biology2148, 71–83.

Bt R. 1972. Nobilisation of sugarcane. Proceedings of International Society of Sugar Cane Technologists14, 206–216.

Bušić A, Marđetko N, Kundas S, Morzak G, Belskaya H, Ivančić Šantek M, Komes D, Novak S, Šantek B. 2018. Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technology and Biotechnology56, 289–311.

Canilha L, Kumar Chandel A, Dos Santos Milessi T S, Fernandes Antunes F A, Da Costa Freitas W L, Das Graças Almeida Felipe M, Da Silva S S. 2012. Bioconversion of sugarcane biomass into ethanol: An overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. Journal of Biomedicine and Biotechnology2012, 989572.

D’hont A, Rao P, Feldmann P, Grivet L, Islam-Faridi N, Taylor P, Glaszmann J. 1995. Identification and characterisation of sugarcane intergeneric hybrids, Saccharum officinarum×Erianthus arundinaceus, with molecular markers and DNA in situ hybridisation. Theoretical Applied Genetics91, 320–326.

Guimarães C T, Sobral B W S.1998. The Saccharum complex: Relation to other andropogoneae. Plant Breeding Reviews16, 269–288.

Han Y, Zhang T, Thammapichai P, Weng Y, Jiang J. 2015. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics200, 771–779.

He L, Zhao H, He J, Yang Z, Guan B, Chen K, Hong Q, Wang J, Liu J, Jiang J. 2020. Extraordinarily conserved chromosomal synteny of Citrus species revealed by chromosome-specific painting. The Plant Journal103, 2225–2235.

Hoang P T N, Rouillard J M, Macas J, Kubalová I, Schubert V, Schubert I. 2021. Limitation of current probe design for oligo-cross-FISH, exemplified by chromosome evolution studies in duckweeds. Chromosoma130, 15–25.

Hou L, Xu M, Zhang T, Xu Z, Wang W, Zhang J, Yu M, Ji W, Zhu C, Gong Z, Gu M, Jiang J, Yu H. 2018. Chromosome painting and its applications in cultivated and wild rice. BMC Plant Biology18, 110.

Hu X, Yu F, Huang Y, Sun L, Li X, Yang S, Chen K, Huang F, Zeng K, Zhang M, Deng Z. 2019. Characterization analysis of the 35S rDNA intergenic spacers in Erianthus arundinaceusGene694, 63–70.

Huang Y, Wu J, Wang P, Lin Y, Fu C, Deng Z, Wang Q, Li Q, Chen R, Zhang M. 2015. Characterization of chromosome inheritance of the intergeneric BC2 and BC3 progeny between Saccharum spp. and Erianthus arundinaceusPLoS ONE10, e0133722.

Irvine J E. 1999. Saccharum species as horticultural classes. Theoretical and Applied Genetics98, 186–194.

Jackson P, Henry R J. 2011. Erianthus. In: Kole C, ed., Wild Crop Relatives: Genomic and Breeding Resources, Industrial Crops. Springer-Verlag, Berlin. pp. 97–107.

Jiang J. 2019. Fluorescence in situ hybridization in plants: Recent developments and future applications. Chromosome Research27, 153–165.

Jiang J, Gill B S. 2006. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome49, 1057–1068.

Kandasami P. 1961. Interspecific and intergeneric hybrids of Saccharum spontaneum L. Cytologia26, 117–123.

Li H, Xiong L, Chen X, Wang C, Qi G, Huang C, Luo M, Chen X. 2017. Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment. Bioresource Technology228, 257–263.

Liu D, Zhang H, Zhang L, Yuan Z, Hao M, Zheng Y. 2014. Distant hybridization: A tool for interspecific manipulation of chromosomes. In: Pratap A J, Kumar J, eds., Alien Gene Transfer in Crop Plantsvol. 1Innovations. Methods and Risk Assessment. Springer, New York. pp. 25–42.

Lloyd Evans D, Joshi S V, Wang J. 2019. Whole chloroplast genome and gene locus phylogenies reveal the taxonomic placement and relationship of Tripidium (Panicoideae: Andropogoneae) to sugarcane. BMC Evolutionary Biology19, 33.

Meng Z, Han J, Lin Y, Zhao Y, Lin Q, Ma X, Wang J, Zhang M, Zhang L, Yang Q, Wang K. 2020. Characterization of a Saccharum spontaneum with a basic chromosome number of x=10 provides new insights on genome evolution in genus SaccharumTheoretical and Applied Genetics133, 187–199.

Mukherjee S K. 1957. Origin and distribution of SaccharumBotanical Gazette119, 55–61.

Pachakkil B, Terajima Y, Ohmido N, Ebina M, Irei S, Hayashi H, Takagi H. 2019. Cytogenetic and agronomic characterization of intergeneric hybrids between Saccharum spp. hybrid and Erianthus arundinaceusScientific Reports9, 1748.

Piperidis G, Christopher M J, Carroll B J, Berding N, D’hont A. 2000. Molecular contribution to selection of intergeneric hybrids between sugarcane and the wild species Erianthus arundinaceusGenome43, 1033–1037.

Piperidis N, Chen J W, Deng H H, Wang L P, Jackson P, Piperidis G. 2010. GISH characterization of Erianthus arundinaceus chromosomes in three generations of sugarcane intergeneric hybrids. Genome53, 331–336.

Piperidis N, D’hont A. 2020. Sugarcane genome architecture decrypted with chromosome-specific oligo probes. The Plant Journal103, 2039–2051.

Qu M, Li K, Han Y, Chen L, Li Z, Han Y. 2017. Integrated karyotyping of woodland strawberry (Fragaria vesca) with oligopaint FISH probes. Cytogenetics and Genome Research153, 158–164.

Rabelo S C, Carrere H, Maciel Filho R, Costa A C. 2011. Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresource Technology102, 7887–7895.

Raj P, Selvi A, Prathima P T, Nair N V. 2016. Analysis of genetic diversity of Saccharum complex using chloroplast microsatellite markers. Sugar Tech18, 141–148.

Reddy B V S, Ramesh S, Ashok Kumar A, Wani S P, Ortiz R, Ceballos H, Sreedevi T K. 2008. Bio-fuel crops research for energy security and rural development in developing countries. BioEnergy Research1, 248–258.

Riera-Lizarazu O, Rines H W, Phillips R L. 1996. Cytological and molecular characterization of oat×maize partial hybrids. Theoretical and Applied Genetics93, 123–135.

Tsuruta S I, Ebina M, Kobayashi M, Takahashi W. 2017. Complete chloroplast genomes of Erianthus arundinaceus and Miscanthus sinensis: Comparative genomics and evolution of the Saccharum complex. PLoS ONE12, e0169992.

Vieira S, Barros M V, Sydney A C N, Piekarski C M, De Francisco A C, De Souza Vandenberghe L P, Sydney E B. 2020. Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. Bioresource Technology299, 122635.

Winnepenninckx B, Backeljau T, De Wachter R. 1993. Extraction of high molecular weight DNA from molluscs. Trends in Genetics9, 407.

Wu J Y, Huang Y J, Lin Y Q, Fu C, Liu S M, Deng Z H, Li Q W, Huang Z X, Chen R K, Zhang M Q. 2014. Unexpected inheritance pattern of Erianthus arundinaceus chromosomes in the intergeneric progeny between Saccharum spp. and Erianthus arundinaceusPLoS ONE9, e110390.

Xin H, Zhang T, Wu Y, Zhang W, Zhang P, Xi M, Jiang J. 2019. An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting. The Plant Journal101, 253–264.

Yang S, Cápal P, Doležel J, Li X, Qian W, Wang Z, Zeng K, Li P, Zhou H, Xia R, Zhang M, Deng Z. 2022. Sequence analysis of Erianthus arundinaceus chromosome 1 isolated by flow sorting after genomic in situ hybridization in suspension. The Crop Journal10, 1746–1754.

Yang S, Zeng K, Chen K, Wu J, Wang Q, Li X, Deng Z, Huang Y, Huang F, Chen R, Zhang M. 2019. Chromosome transmission in BC4 progenies of intergeneric hybrids between Saccharum spp. and Erianthus arundinaceus (Retz.) Jeswiet. Scientific Reports9, 2528.

Yu F, Chai J, Li X, Yu Z, Yang R, Ding X, Wang Q, Wu J, Yang X, Deng Z. 2021. Chromosomal characterization of Tripidium arundinaceum revealed by Oligo-FISH. International Journal of Molecular Sciences22, 8539.

Yu F, Zhao X, Chai J, Ding X, Li X, Huang Y, Wang X, Wu J, Zhang M, Yang Q, Deng Z, Jiang J. 2022. Chromosome-specific painting unveils chromosomal fusions and distinct allopolyploid species in the Saccharum complex. New Phytologist233, 1953–1965.

Zeng Q, Huang Z, Wang Q, Wu J, Feng X, Qi Y. 2021. Genome survey sequence and the development of simple sequence repeat (SSR) markers in Erianthus arundinaceusSugar Tech23, 77–85.

Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, et al. 2018. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nature Genetics50, 1565–1573.

[1] Tantan Zhang, Yali Liu, Shiqiang Ge, Peng Peng, Hu Tang, Jianwu Wang. Sugarcane/soybean intercropping with reduced nitrogen addition enhances residue-derived labile soil organic carbon and microbial network complexity in the soil during straw decomposition[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4216-4236.
[2] XU Jing-sheng, DENG Yu-qing, CHENG Guang-yuan, ZHAI Yu-shan, PENG Lei, DONG Meng, XU Qian, YANG Yong-qing. Sugarcane mosaic virus infection of model plants Brachypodium distachyon and Nicotiana benthamiana[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2294-2301.
[3] José A Reyes-Gutiérrez, Oziel D Monta?ez-Valdez, Ramón Rodríguez-Macias, Mario Ruíz-López, Eduardo Salcedo-Pérez, Cándido E Guerra-Medina. Effect of a bacterial inoculum and additive on dry matter in situ degradability of sugarcane silage[J]. >Journal of Integrative Agriculture, 2015, 14(3): 497-502.
[4] Nahla A Abdel-Aziz, Mounir El-Adawy, Maria A Mariezcurrena-Berasain, Abdelfattah Z M Salem, Jaime Olivares-Pérez, Ahmed E Kholif, Borhami E Borhami. Effects of exogenous enzymes, Lactobacillus acidophilus or their combination on feed performance response and carcass characteristics of rabbits fed sugarcane bagasse[J]. >Journal of Integrative Agriculture, 2015, 14(3): 544-549.
[5] QI Yong-wen, PANYong-bao , LAO Fang-ye, ZHANG Chui-ming, FAN Li-na, HE Hui-yi, LIU Rui, WANG Qin-nan, LIU Shao-mou, LIU Fu-ye, LI Qi-wei , DENG Hai-hua. GeneticStructureandDiversityofParentalCultivars Involved inChinaMainland Sugarcane Breeding Programs as Inferred from DNA Microsatellites[J]. >Journal of Integrative Agriculture, 2012, 12(11): 1794-1803.
No Suggested Reading articles found!