Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (11): 3763-3773    DOI: 10.1016/j.jia.2023.09.027
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Rapid detection of the rice false smut fungus Ustilaginoidea virens by lateral flow strip‑based recombinase polymerase amplification assay
Jiacheng Xi1*, Sanlian Wan2*, Yue Li1, Yuandi Xu1, Jing Yang1, Ting Zhang1, Jiajia Chen3, Zhengguang Zhang1, Danyu Shen1#, Haifeng Zhang1#

1 Sanya Institute of Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and Pests of Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China

2 Sanya Extension Service Center for Agricultural Technology, Sanya 572024, China

3 College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

稻曲病菌引起的稻曲病是水稻穗部的重要真菌病害之一。由于其侵染时期和部位的特殊性,导致稻曲病防治困难。因此,建立稻曲病的早期诊断与监测技术对阻断病害的发生与传播具有重要意义。重组酶聚合酶扩增技术(LF-RPA)具有省时、简便、假阳性率低、结果可视化等优点。本研究利用比较基因组学方法鉴定到稻曲病菌的特异基因Uv_3611,将其作为检测靶标,通过引物和探针的设计与筛选,建立了稻曲病菌的LF-RPA快速检测技术。该技术方法能特异性的检测出稻曲病菌,且在最佳反应条件下,检测的最低灵敏度为10 pg基因组DNA。进一步结合简易的PEG-NaOH核酸提取方法,无需特定的仪器设备,该技术在30分钟内即可快速检测出田间水稻各部位商品化种子中的稻曲病菌。该检测方法可用于田间稻曲病的快速诊断与早期监测,同时可为及时、有效的稻曲病防控策略的制定提供技术支撑。



Abstract  

Rice false smut, caused by Ustilaginoidea virens, is a devastating disease that greatly reduces rice yield and quality.  However, controlling rice false smut disease is challenging due to the unique infection mode of Uvirens.  Therefore, there is a need for early diagnosis and monitoring techniques to prevent the spread of this disease.  Lateral flow strip-based recombinase polymerase amplification (LF-RPA) overcomes the limitations of current Uvirens detection technologies, which are time-consuming, require delicate equipment, and have a high false-positive rate.  In this study, we used a comparative genomics approach to identify Uv_3611, a specific gene of Uvirens, as the target for the LF-RPA assay.  The designed primers and probe efffectively detected the genomic DNA (gDNA) of Uvirens and demonstrated no cross-reactivity with related pathogens.  Under optimal conditions, the LF-RPA assay demonstrated a sensitivity of 10 pg of Uvirens gDNA.  Additionally, by incorporating a simplified PEG-NaOH method for plant DNA extraction, the LF-RPA assay enabled the detection of Uvirens in rice spikelets within 30 min, without the need for specialized equipment.  Furthermore, the LF-RPA assay successfully detected Uvirens in naturally infected rice and seed samples in the field.  Therefore, the LF-RPA assay is sensitive, efficient, and convenient, and could be developed as a kit for monitoring rice false smut disease in the field.

Keywords:  rice false smut        Ustilaginoidea virens        isothermal amplification        disease monitoring        field diagnosis  
Received: 06 June 2023   Accepted: 28 July 2023
Fund: 
This work was supported by grants from the Jiangsu Agricultural Science and Technology Innovation Fund, China (JASTIF) (CX(21)3012) to Haifeng Zhang.
About author:  Jiacheng Xi, E-mail: 2020802230@stu.njau.edu.cn; #Correspondence Danyu Shen, E-mail: shendanyu@njau.edu.cn; Haifeng Zhang, E-mail: hfzhang@njau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Jiacheng Xi, Sanlian Wan, Yue Li, Yuandi Xu, Jing Yang, Ting Zhang, Jiajia Chen, Zhengguang Zhang, Danyu Shen, Haifeng Zhang. 2024. Rapid detection of the rice false smut fungus Ustilaginoidea virens by lateral flow strip‑based recombinase polymerase amplification assay. Journal of Integrative Agriculture, 23(11): 3763-3773.

Andresen D, von Nickisch-Rosenegk M, Bier F F. 2009. Helicase-dependent amplification: Use in OnChip amplification and potential for point-of-care diagnostics. Expert Review of Molecular Diagnostics9, 645–650.

Bag M K, Basak N, Bagchi T, Masurkar P, Ray A, Adak T, Jena M, Rath P C. 2021. Consequences of Ustilaginoidea virens infection, causal agent of false smut disease of rice, on production and grain quality of rice. Journal of Cereal Science100, 103220.

Chen W Y, Yu J, Xu H, Lu X Y, Dai T T, Tian Y E, Shen D Y, Dou D L. 2021. Combining simplified DNA extraction technology and recombinase polymerase amplification assay for rapid and equipment-free detection of citrus pathogen Phytophthora parasiticaJournal of Integrative Agriculture20, 2696–2705.

Chen Y, Yao J, Li Y F, Wang W X, Yang X, Zhang A F. 2014. Simple and rapid detection of rice false smut pathogen Ustilaginoidea virens in rice seeds. Phytoparasitica42, 371–375.

Chen Z P, Jiao B B, Lin L, Dai T T. 2022a. First report of crown and root rot caused by Fusarium oxysporum on Photinia×fraseri in China. Plant Disease106, 3210.

Chen Z P, Jiao B B, Zhou J, He H B, Dai T T. 2022b. Rapid detection of Phytophthora cinnamomi based on a new target gene Pcinn13739. Frontiers in Cellular and Infection Microbiology12, 923700.

Clancy E, Coughlan H, Higgins O, Boo T W, Cormican M, Barrett L, Smith T J, Reddington K, Barry T. 2016. Development of internally controlled duplex real-time NASBA diagnostics assays for the detection of microorganisms associated with bacterial meningitis. Journal of Microbiological Methods127, 197–202.

Dai T T, Hu T, Yang X, Shen D Y, Jiao B B, Tian W, Xu Y. 2019a. A recombinase polymerase amplificationlateral flow dipstick assay for rapid detection of the quarantine citrus pathogen in China, Phytophthora hibernalisPeer J11, e8083.

Dai T T, Yang X, Hu T, Jiao B B, Xu Y, Zheng X B, Shen D Y. 2019b. Comparative evaluation of a novel recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) assay, LAMP, conventional PCR, and leaf-disc baiting methods for detection of Phytophthora sojaeFrontiers in Microbiology10, 1884.

Dai T T, Yang X, Hu T, Li Z Y, Xu Y, Lu C C. 2019c. A novel LAMP assay for the detection of Phytophthora cinnamomi utilizing a new target gene identified from genome sequences. Plant Disease103, 3101–3107.

Fan J, Guo X Y, Huang F, Li Y, Liu Y F, Li L, Xu Y J, Zhao J Q, Xiong H, Yu J J, Wang W. 2014. Epiphytic colonization of Ustilaginoidea virens on biotic and abiotic surfaces implies the widespread presence of primary inoculum for rice false smut disease. Plant Pathology63, 937–945.

Fan J, Yang J, Wang Y Q, Li G B, Li Y, Huang F, Wang W M. 2016. Current understanding on Villosiclava virens, a unique flower-infecting fungus causing rice false smut disease. Molecular Plant Pathology17, 1321–1330.

Fuller S L, Savory E A, Weisberg A J, Buser J Z, Gordon M I, Putnam M L, Chang J H. 2017. Isothermal amplification and lateral-flow assay for detecting crown-gall-causing Agrobacterium spp. Phytopathology107, 1062–1068.

Gao W F, Zhu P, Huang H L. 2016. Recombinase polymerase amplification: A new DNA/RNA amplification strategy. Chinese Journal of Biochemistry and Molecular Biology32, 627–634. (in Chinese)

Ghosh D K, Kokane S B, Kokane A D, Warghane A J, Motghare M R, Bhose S, Sharma A K, Reddy M K. 2018. Development of a recombinase polymerase based isothermal amplification combined with lateral flow assay (HLB-RPA-LFA) for rapid detection of “Candidatus Liberibacter asiaticus”. PLoS ONE13, e0208530.

Guo W W, Gao Y X, Yu Z M, Xiao Y H, Zhang Z G, Zhang H F. 2019. The adenylate cyclase UvAc1 and phosphodiesterase UvPdeH control the intracellular cAMP level, development, and pathogenicity of the rice false smut fungus Ustilaginoidea virensFungal Genetics and Biology129, 65–73.

Huang W, Zhang H, Xu J S, Wang S, Kong X J, Ding W, Xu J, Feng J. 2017. Loop-mediated isothermal amplification method for the rapid detection of Ralstonia solanacearum phylotype I mulberry strains in China. Frontiers in Plant Science8, 76.

Ivanov A V, Safenkova I V, Drenova N V, Zherdev A V, Dzantiev B D. 2020. Development of lateral flow assay combined with recombinase polymerase amplification for highly sensitive detection of Dickeya solaniMolecular and Cellular Probes53, 101622.

Jeong H W, Lee H J, Cho I S, Ju H J, Jeong R D. 2021. Rapid detection of plum pox virus by reverse transcription recombinase polymerase amplification. Journal of Plant Diseases and Protection128, 881–885.

Jin X L, Yang G J, Xu X G, Yang H, Feng H K, Li Z H, Shen J X, Zhao C J, Lan Y B. 2015. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sensing7, 13251–13272.

Ju Y L, Li C F, Shen P F, Wan N, Han W B, Pan Y M. 2020. Rapid and visual detection of Verticillium dahliae using recombinase polymerase amplification combined with lateral flow dipstick. Crop Protection136, 105226.

Karakkat B B, Hockemeyer K, Franchett M, Olson M, Mullenberg C, Koch P L. 2018. Detection of root-infecting fungi on cool-season turfgrasses using loop-mediated isothermal amplification and recombinase polymerase amplification. Journal of Microbiological Methods151, 90–98.

Lau H Y, Wang Y L, Wee E J H, Botella J R, Trau M. 2016. Field demonstration of a multiplexed point-of-care diagnostic platform for plant pathogens. Analytical Chemistry88, 8074–8081.

Li H, Ni D H, Duan Y B, Chen Y, Li J, Song F S, Li L, Wei P C, Yang J B. 2013. Quantitative detection of the rice false smut pathogen Ustilaginoidea virens by real-time PCR. Genetics and Molecular Research12, 6433–6441.

Lobato I M, O’Sullivan C K. 2018. Recombinase polymerase amplification: Basics, applications and recent advances. TrAC Trends in Analytical Chemistry98, 19–35.

Londono M A, Harmon C L, Polston J E. 2016. Evaluation of recombinase polymerase amplification for detection of begomoviruses by plant diagnostic clinics. Virology Journal13, 48.

Lu X Y, Xu H, Song W, Yang Z T, Yu J, Tian Y E, Jiang M, Shen D Y, Dou D L. 2021. Rapid and simple detection of Phytophthora cactorum in strawberry using a coupled recombinase polymerase amplification-lateral flow strip assay. Phytopathology Research3, 12.

Lu X Y, Zheng Y, Zhang F, Yu J, Dai T T, Wang R B, Tian Y E, Xu H, Shen D Y, Dou D L. 2020. A rapid, equipment-free method for detecting Phytophthora infestans in the field using a lateral flow strip-based recombinase polymerase amplification assay. Plant Disease104, 2774–2778.

Miles T, Burkhardt A, Martin F. 2016. Utilizing mitochondrial loci to develop TaqMan and recombinase polymerase amplification assays for the genus PythiumPhytopathology106, 115–130.

Munawar M, Toljamo A, Martin F, Kokko H. 2019. Recombinase polymerase amplification assay for fast, sensitive and on-site detection of Phytophthora cactorum without DNA extraction. European Journal of Horticultural Science84, 14–19.

Nicolaisen M, Suproniene S, Nielsen L K, Lazzaro I, Spliid N H, Justesen A F. 2009. Real-time PCR for quantification of eleven individual Fusarium species in cereals. Journal of Microbiological Methods76, 234–240.

Piepenburg O, Williams C H, Stemple D L, Armes N A. 2006. DNA detection using recombination proteins. PLoS Biology4, e204.

Polstra A M, Goudsmit J, Cornelissen M. 2002. Development of real-time NASBA assays with molecular beacon detection to quantify mRNA coding for HHV-8 lytic and latent genes. BMC Infectious Diseases2, 18.

Qiu J H, Meng S, Deng Y Z, Huang S W, Kou Y J. 2019. Ustilaginoidea virens: A fungus infects rice flower and threats world rice production. Rice Science26, 199–206.

Rohrman B, Richards-Kortum R. 2015. Inhibition of recombinase polymerase amplification by background DNA: A lateral flow-based method for enriching target DNA. Analytical Biochemistry87, 1963–1967.

Samuelian S K, Greer L A, Savocchia S, Steel C C. 2011. Detection and monitoring of greeneria uvicola and Colletotrichum acutatum development on grapevines by real-time PCR. Plant Disease95, 298–303.

Silva G, Oyekanmi J, Nkere C K, Bomer M, Kumar P L, Seal S E. 2018. Rapid detection of potyviruses from crude plant extracts. Analytical Biochemistry546, 17–22.

Strayer-Scherer A, Jones J B, Paret M L. 2019. Recombinase polymerase amplification assay for field detection of tomato bacterial spot pathogens. Phytopathology109, 690–700.

Sun G, Liu J, Li G, Zhang X, Chen T, Chen J, Zhang H, Wang D, Sun F, Pan H. 2015. Quick and accurate detection and quantification of Magnaporthe oryzae in rice using real-time quantitative polymerase chain reaction. Plant Disease99, 219–224.

Sun N, Wang Y, Yao X Y, Chen F F, Gao D Y, Wang W P, Li X J. 2019. Visual signal generation for the detection of influenza viruses by duplex recombinase polymerase amplification with lateral flow dipsticks. Analytical and Bioanalytical Chemistry41, 3591–3602.

Sun W, Fan J, Fang A, Li Y, Tariqjaveed M, Li D, Hu D, Wang W M. 2020. Ustilaginoidea virens: Insights into an emerging rice pathogen. Annual Review of Phytopathology58, 363–385.

Tang J, Zheng L, Jia Q, Liu H, Hsiang T, Huang J. 2017. PCR markers derived from comparative genomics fordetection and identification of the rice pathogen Ustilaginoidea virens in plant yissues. Plant Disease101, 1515–1521.

Tang Y X, Jin J, Hu D W, Yong M L, Xu Y, He L P. 2013. Elucidation of the infection process of Ustilaginoidea virens (teleomorph: Villosiclava virens) in rice spikelets. Plant Pathology62, 1–8.

Wang G, He D, Zhao F C, Hu J Q, Lee Y W, Shi J R, Xu J H. 2020. Extraction and purification of ustiloxin A from rice false smut balls by a combination of macroporous resin and high-speed countercurrent chromatography. Food ProductionProcessing and Nutrition2, 29.

Xu J Y, Yang X, Wu C P, Chen Z P, Dai T T. 2022a. Recombinase polymerase amplification-lateral flow dipstick assay for rapid detection of Fusarium circinatum based on a newly identified unique target gene. Plant Disease107, 1067–1074.

Xu J Y, Yang X, Wu C P, Chen Z P, Zhou Z W, Chen Z P, Dai T T. 2022b. First report of Phytophthora nicotianae causing dianthus chinensis root rot and foliage blight in China. Plant Disease106, 2002.

Yang X, Al-Attala M N, Zhang Y, Zhang A F, Zang H Y, Gu C Y, Gao T C, Chen Y, Ali F, Li Y F, Yao J, Zhu J G. 2018. Rapid Detection of Ustilaginoidea virens from rice using loop-mediated isothermal amplification assay. Plant Disease102, 1741–1747.

Yang Y, Qin X D, Zhang W, Li Z Y, Zhang S J, Li Y M, Zhang Z D. 2017. Development of an isothermal recombinase polymerase amplification assay for rapid detection of pseudorabies virus. Molecular and Cellular Probes33, 32–35.

Yu J, Shen D, Dai T, Lu X, Xu H, Dou D. 2019. Rapid and equipment-free detection of Phytophthora capsici using lateral flow strip-based recombinase polymerase amplification assay. Letters in Applied Microbiology69, 64–70.

Yuan S, Linquist B A, Wilson L T, Cassman K G, Stuart A M, Pede V, Miro B, Saito K, Agustiani N, Aristya V E, Krisnadi L Y, Zanon A J, Heinemann A B, Carracelas G, Subash N, Brahmanand P S, Li T, Peng S B, Grassini P. 2021. Sustainable intensification for a larger global rice bowl. Nature Communications12, 7163.

Zhang J J, Zhang B, Yuan Y, Gao X Q, Guo M, Guan Y F. 2020. Feasibility of rolling circle amplification for directly detecting miR-93-5p. Journal of China Medical University49, 10–15.

Zhou J, Xia H M, Jiao B B, He H B, Dai T T. 2022. First report of crown and root rot caused by Fusarium solani on Photinia×fraseri in China. Plant Disease107, 1231.

Zhou Z W, Yang X, Wu C P, Chen Z P, Dai T T. 2022. Whole-genome sequence resource of Phytophthora pini, the causal pathogen of foliage blight and shoot dieback of Rhododendron pulchrumMolecular Plant Microbe Interactions35, 944–948.

[1] FAN Lin-lin, YONG Ming-li, LI Dan-yang, LIU Yi-jia, LAI Chao-hui, CHEN Hong-ming, CHENG Fang-min, HU Dong-wei. Effect of temperature on the development of sclerotia in Villosiclava virens[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2550-2555.
[2] DENG Qi-de, YONG Ming-li, LI Dan-yang, LAI Chao-hui, CHEN Hong-ming, FAN Jing, HU Dong-wei. Survey and examination of the potential alternative hosts of Villosiclava virens, the pathogen of rice false smut, in China[J]. >Journal of Integrative Agriculture, 2015, 14(7): 1332-1337.
No Suggested Reading articles found!