Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (2): 624-638    DOI: 10.1016/j.jia.2024.07.025
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Exploring strategies for agricultural sustainability in super hybrid rice using the food–carbon–nitrogen–water–energy–profit nexus framework

Jun Deng1, Ke Liu1, 2#, Xiangqian Feng1, Jiayu Ye1, Matthew Tom Harrison2, Peter de Voil3, Tajamul Hussain4, Liying Huang1, Xiaohai Tian1, Meixue Zhou2, Yunbo Zhang1# 

1 Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River of Ministry of Agriculture and Rural Affairs/College of Agriculture, Yangtze University, Jingzhou 434025, China

2 Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, TAS 7248, Australia

3 Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Gatton Campus, Gatton, QLD 4345, Australia

4 Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR 97838, USA

 Highlights 
A comprehensive food–carbon–nitrogen–water–energy–profit (FCNWEP) nexus framework was established to quantitatively assess the multi-dimensional sustainability of super hybrid rice production.
Integrated crop management 2 (ICM2) with optimized nitrogen, dense planting, and alternate wetting–drying irrigation increased yield by 13–30% and profit by up to 115%.
The integrated management system reduced carbon, nitrogen, water, and energy footprints per yield unit, while enhancing nitrogen and energy use efficiencies.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

超级杂交稻产量潜力不断突破,为保障中国乃至全球的粮食安全做出了重大贡献。然而,面对资源趋紧、环境污染严重、生态系统退化的严峻形势,亟需探索高产、高效、生态、安全的绿色栽培管理模式,以实现超级杂交稻的可持续发展因此本研究采用了食物----能源-效益 (FCNWEP) 关系框架,综合评估了不同作物管理策略中国中部三个地点的可持续性。田间试验于 2017 年至 2021 年在湖北荆州、湖北随州以及湖南长沙进行,试验品种为广泛种植的优良超级杂交稻 “Y两优900”试验设置四种作物管理策略:对照(CK0 kg N ha-1)、常规作物管理(CCM210-250 kg N ha-1,基肥:分蘖肥=7:3)和两种综合作物管理策略(ICM1180-210 kg N ha-1,基肥:分蘖肥:穗肥= 5:2:3ICM2240-270 kg N ha-1,基肥:分蘖肥:穗肥:粒肥= 5:2:2:1,并评估了不同作物管理策略下水稻产量、碳足迹、氮足迹、能源足迹、氮素利用效率和经济效益的差异。结果表明,不同作物管理策略水稻产量存在显著差异,ICM2 在三个地点的产量均高于 CCM ICM1。在荆州、随州和长沙,ICM2 的产量分别比 CCM 30.2%24.7% 13.3%。此外,荆州、随州和长沙 ICM2 的净利润分别比 CCM ICM1 31.8% 115.2%32.2% 109.9% 以及 15.4% 34.0%。综合作物管理策略,特别是 ICM2,提高了氮肥和能源利用效率,从而减少了碳、氮、水和能源足迹。总体而言,基于 FCNWEP 框架计算的综合可持续性得分表明,与 CCM 相比,ICM2 ICM1 表现出更高的可持续性水平。本研究为水稻生产的实际管理措施提供了科学指导,并为加强农业可持续性提出了建议。



Abstract  


The breakthrough in super hybrid rice yield has significantly contributed to China’s and global food security.  However, the inherent conflict between high productivity and environmentally sustainable agriculture poses substantial challenges.  Issues such as water scarcity, energy crises, escalating greenhouse gas emissions, and diminishing farm profitability threaten long-term agricultural sustainability.  In response, we applied a holistic food–carbon–nitrogen–water–energy–profit (FCNWEP) nexus framework to comprehensively assess the sustainability of distinct crop management strategies across three sub-sites in Central China.  Field experiments were conducted in Hubei and Hunan provinces from 2017 to 2021 using a widely adopted elite super hybrid rice cultivar (Y-liangyou 900). Four crop management treatments were implemented: a control (CK, 0 kg N ha−1), conventional crop management (CCM, 210–250 kg N ha−1, 7:3 basal:mid-tiller fertilizer ratio), and two integrated crop management (ICM) treatments (ICM1, 180–210 kg N ha−1, 5:2:3 basal:mid-tiller:panicle initiation fertilizer ratio; ICM2, 240–270 kg N ha−1, 5:2:2:1 basal:mid-tiller:panicle initiation:flowering fertilizer ratio).  Variables assessed included grain yield, carbon footprint, nitrogen footprint, water footprint, energy footprint, nitrogen use efficiency, and economic benefits.  Our results showed significant yield variations, with ICM2 consistently outperforming CCM and ICM1 across all three sites.  In Jingzhou, Suizhou, and Changsha, ICM2’s grain yield was 30.2, 24.7, and 13.3% higher than CCM, respectively.  Net profits under ICM2 exceeded those of CCM and ICM1 by 31.8 and 115.2% in Jingzhou, 32.2 and 109.9% in Suizhou, and 15.4 and 34.0% in Changsha, respectively.  Integrated crop management, particularly ICM2, demonstrated improved nitrogen and energy use efficiency, leading to reduced carbon, nitrogen, water, and energy footprints.  Overall, composite sustainability scores derived from the FCNWEP framework indicated that both ICM2 and ICM1 exhibited higher sustainability levels compared to CCM.  This study provides valuable insights into practical management methodologies and offers recommendations for enhancing agricultural sustainability.


Keywords:  super hybrid        ecological footprint        rice production        integrated crop management        sustainability  
Received: 19 February 2024   Accepted: 13 June 2024 Online: 19 July 2024  
Fund: This study was funded by the National Natural Science Foundation of China (32172108 and 32301940), the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (2023QNRC001), the China Postdoctoral Science Foundation (2022M710489), the Chinese Scholarship Council (202310930003), and the National Key Research and Development Program of China (2022YFD2301004).
About author:  #Correspondence Ke Liu, E-mail: ke.liu@utas.edu.au; Yunbo Zhang, E-mail: yzhang@yangtzeu.edu.cn

Cite this article: 

Jun Deng, Ke Liu, Xiangqian Feng, Jiayu Ye, Matthew Tom Harrison, Peter de Voil, Tajamul Hussain, Liying Huang, Xiaohai Tian, Meixue Zhou, Yunbo Zhang. 2026. Exploring strategies for agricultural sustainability in super hybrid rice using the food–carbon–nitrogen–water–energy–profit nexus framework. Journal of Integrative Agriculture, 25(2): 624-638.

Cai S Y, Zhao X, Pittelkow C M, Fan M S, Zhang X, Yan X Y. 2023. Optimal nitrogen rate strategy for sustainable rice production in China. Nature615, 73–79.

Chapagain A K, Hoekstra A Y. 2011. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecological Economics70, 749–758.

Chaudhary A, Gustafson D, Mathys A. 2018. Multi-indicator sustainability assessment of global food systems. Nature Communications9, 848.

Chen X P, Cui Z L, Fan M S, Vitousek P, Zhao M, MA W Q, Wang Z L, Zhang W J, Yan X Y, Yang J C, Deng X P, Gao Q, Zhang Q, Guo S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y, et al. 2014. Producing more grain with lower environmental costs. Nature514, 486–489.

Chen Z D, Xu C C, Ji L, Feng J F, Li F B, Zhou X Y, Fang F P. 2020. Effects of multi-cropping system on temporal and spatial distribution of carbon and nitrogen footprint of major crops in China. Global Ecology and Conservation22, e00895.

Choudhury A T M A, Kennedy I R. 2005. Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Communications in Soil Science and Plant Analysis36, 1625–1639.

Deng J, Harrison M T, Liu K, Ye J Y, Xiong X, Fahad S, Huang L Y, Tian X H, Zhang Y B. 2022a. Integrated crop management practices improve grain yield and resource use efficiency of super hybrid rice. Frontiers in Plant Science13, 851562.

Deng J, Sheng T, Zhong X F, Ye J Y, Wang C H, Huang L Y, Tian X H, Liu K, Zhang Y B. 2023. Delayed leaf senescence improves radiation use efficiency and explains yield advantage of large panicle-type hybrid rice. Plants12, 4063.

Deng J, Ye J, Liu K, Harrison M T, Zhong X F, Wang C H, Tian X H, Huang L Y, Zhang Y B. 2022b. Optimizing agronomy improves super hybrid rice yield and nitrogen use efficiency through enhanced post-heading carbon and nitrogen metabolism. Agronomy13, 13.

Deng N Y, Grassini P, Yang H S, Huang J L, Cassman K G, Peng S B. 2019. Closing yield gaps for rice self-sufficiency in China. Nature Communications10, 1725.

FAO (Food and Agriculture Organization of the United Nations). 2020. Data release detail food and agriculture organization of the United Nations. [2021-9-8]. https://www.fao.org/food-agriculture-statistics/data-release/data-release-detail/en/c/1675061/

FAO (Food and Agriculture Organization of the United Nations). 2022. Food and agriculture organization of the united nation) statistical yearbook 2022. [2023-7-15]. https://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/1627308/

Gustafson D, Asseng S, Kruse J, Thoma G, Guan K Y, Hoogenboom G, Matlock M, McLean M, Parajuli R, Rajagopalan K, Stöckle C, Sulser T B, Tarar L, Wiebe K, Zhao C, Fraisse C, Gimenez C, Intarapapong P, Karimi T, Kruger C, et al. 2021. Supply chains for processed potato and tomato products in the United States will have enhanced resilience with planting adaptation strategies. Nature Food2, 862–872.

He Q S, Liu D L, Wang B, Wang Z K, Cowie A, Simmons A, Xu Z C, Li L C, Shi Y, Liu K, Harrison M T, Waters C, Huete A, Yu Q, et al. 2024. A food–energy–water–carbon nexus framework informs region-specific optimal strategies for agricultural sustainability. ResourcesConservation and Recycling203, 107428.

Jiang Q T, Bhattarai N, Pahlow M, Xu Z C. 2022. Environmental sustainability and footprints of global aquaculture. ResourcesConservation and Recycling180, 106183.

Jiang Y, Carrijo D, Huang S, Chen J, Balaine N, Zhang W J, Groenigen K J v G, Linquist B. 2019. Water management to mitigate the global warming potential of rice systems: A global meta-analysis. Field Crops Research234, 47–54.

Jiang Y, Wang L L, Yan XJ, Tian Y L, Deng A X, Zhang W J. 2013. Super rice cropping will enhance rice yield and reduce CH4 emission: A case study in Nanjing, China. Rice Science20, 427–433.

Jin Z Q, Liao W J, Mu Y X, Li Y S, Nie L X. 2023a. Integrated assessment of water footprint and energy production efficiency in different rice-rape rotation systems. Energy266, 126535.

Jin Z Q, Mu Y X, Li Y S, Nie L X. 2023b. Effect of different rice planting methods on the water, energy and carbon footprints of subsequent wheat. Frontiers in Sustainable Food Systems7, 1173916.

Johnson-Beebout S E, Angeles O R, Alberto M C R, Buresh R J. 2009. Simultaneous minimization of nitrous oxide and methane emission from rice paddy soils is improbable due to redox potential changes with depth in a greenhouse experiment without plants. Geoderma149, 45–53.

IPCC (Intergovernmental Panel on Climate Change). 2006. Guidelines for national greenhouse gas inventories. [2024-1-5]. https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/

ISO 14044. 2006. Environmental management-life cycle assessment-requirements and guidelines. International Organization for Standardization. [2024-1-9]. https://www.iso.org/standard/38498.html.

Kang S H, Kim Y, Lee S, Kim H, Kim M. 2022. A study on the field applicability of intermittent irrigation in protected cultivation using an automatic irrigation system. Applied Sciences12, 10680.

Lampayan R M, Rejesus R M, Singleton G R, Bouman B A M. 2015. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Research170, 95–108.

Leip A, Weiss F, Lesschen J P, Westhoek H. 2014. The nitrogen footprint of food products in the European Union. Journal of Agricultural Science152, 20–33.

Liu J, Chen S, Wang H, Chen X D. 2015. Calculation of carbon footprints for water diversion and desalination projects. Energy Procedia75, 2483–2494.

Liu K, Harrison M T, Archontoulis S, Huth N, Yang R, Liu D L, Yan H L, Meinke H, Huber I, Feng P Y, Ahmed I, Zhang Y B, Tian X H, Zhou M X. 2021. Climate change shifts forward flowering and reduces crop waterlogging stress. Environmental Research Letters16, 094017.

Liu K, Harrison M T, Yan H L, Liu D L, Meinke H, Hoogenboom G, Wang B, Peng B, Guan K Y, Jaegermeyr J, Wang E L, Zhang F, Yin X G, Archontoulis S, Nie L X, Badea A, Man J G, Wallach D, Zhao J, Benjumea A B, et al. 2023. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nature Communications14, 765.

Liu Y L, Du J Q, Xu X L, Kardol P, Hu D. 2020. Microtopography-induced ecohydrological effects alter plant community structure. Geoderma362, 114119.

Lu J, Wang D Y, Liu K, Chu G, Huang L Y, Tian X H, Zhang Y B. 2020. Inbred varieties outperformed hybrid rice varieties under dense planting with reducing nitrogen. Scientific Reports10, 8769.

Luo L J, Mei H W, Yu X Q, Xia H, Chen L, Liu H Y, Zhang A N, Xu K, Wei H B, Liu G L, Wang F M, Liu Y, Ma X S, Lou Q J, Feng F J, Zhou L G, Chen S J, Yan M, Liu Z C, Bi J G, et al. 2019. Water-saving and drought-resistance rice: From the concept topractice and theory. Molecular Breeding39, 145.

Ma G H, Yuan L P. 2015. Hybrid rice achievements, development and prospect in China. Journal of Integrative Agriculture14, 197–205.

Ma P, Lan Y, Lv X, Fang P, Yang Z Y, Sun Y J, Zhang R P, Ma J. 2021. Reasonable nitrogen fertilizer management improves rice yield and quality under a rapeseed/wheat–rice rotation system. Agriculture11, 490.

Mooney S J, Sjogersten S. 2022. Greenhouse gas emissions rise due to tillage. Nature Food3, 246.

Mubeen K, Sarwar N, Shehzad M, Ghaffar A, Aziz M. 2022. Irrigation management in rice. In: Sarwar N, Atique-ur-Rehman, Ahmad S, Hasanuzzaman M, eds., Modern Techniques of Rice Crop ProductionSpringer, Singapore. pp. 105–114.

Nhamo L, Mabhaudhi T, Mpandeli S, Dickens C, Nhemachena C, Senzanje A, Naidoo D, Liphadzi S, Modi A T. 2020. An integrative analytical model for the water–energy–food nexus: South Africa case study. Environmental Science & Policy109, 15–24.

Pirdashti H, Pirdashti M, Mohammadi M, Baigi M G, Movagharnejad K. 2015. Efficient use of energy through organic rice–duck mutualism system. Agronomy for Sustainable Development35, 1489–1497.

Qian H Y, Zhu X C, Huang S, Linquist B, Kuzyakov Y, Wassmann R, Minamikawa K, Martinez-Eixarch M, Yan X Y, Zhou F, Sander B O, Zhang W J, Shang Z Y, Zou J W, Zheng X H, Li G H, Liu Z H, Wang S H, Ding Y F, Groenigen K J v, et al. 2023. Greenhouse gas emissions and mitigation in rice agriculture. Nature Reviews Earth & Environment4, 716–732.

Qiao J, Wang J, Zhao D, Zhou W, Schwenke G, Yan T M, Liu D L. 2022. Optimizing N fertilizer rates sustained rice yields, improved N use efficiency, and decreased N losses via runoff from rice-wheat cropping systems. Agriculture Ecosystems & Environment324, 107724.

Qin J Q, Impa S M, Tang Q Y, Yang S H, Yang J, Tao Y S, Jagadish K S V. 2013. Integrated nutrient, water and other agronomic options to enhance rice grain yield and N use efficiency in double-season rice crop. Field Crops Research148, 15–23.

Qin J X, Duan W L, Zou S, Chen Y N, Huang W J, Rosa L. 2024. Global energy use and carbon emissions from irrigated agriculture. Nature Communications15, 3084.

Ramaswami A, Boyer D, Nagpure A S, Fang A, Bogra S, Bakshi B, Cohen E, Rao–Ghorpade A. 2017. An urban systems framework to assess the trans-boundary food–energy–water nexus: Implementation in Delhi, India. Environmental Research Letters12, 025008.

Ridoutt B G, Pfister S. 2013. A new water footprint calculation method integrating consumptive and degradative water use into a single stand-alone weighted indicator. The International Journal of Life Cycle Assessment18, 204–207.

Riya S, Takeuchi Y, Zhou S, Terada A, Hosomi M. 2017. Nitrous oxide production and mRNA expression analysis of nitrifying and denitrifying bacterial genes under floodwater disappearance and fertilizer application. Environmental Science and Pollution Research24, 15852–15859.

Sadhukhan J. 2022. Net-zero action recommendations for scope 3 emission mitigation using life cycle assessment. Energy15, 5522.

Sharma A, Saxena A, Sethi M, Shree V, Goel V. 2011. Life cycle assessment of buildings: A review. Renewable and Sustainable Energy Reviews15, 871–875.

Singh P, Singh G, Sodhi G P S. 2019. Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India. Energy174, 269–279.

Smajgl A, Ward J (eds.). 2013. The Water–Food–Energy Nexus in the Mekong RegionSpringer, New York, NY.

Verhoeven E, Decock C, Barthel M, Bertora C, Sacco D, Romani M, Sleutel S, Six J. 2018. Nitrification and coupled nitrification-denitrification at shallow depths are responsible for early season N2O emissions under alternate wetting and drying management in an Italian rice paddy system. Soil Biology and Biochemistry120, 58–69.

Vora N, Shah A, Bilec M M, Khanna V. 2017. Food–energy–water nexus: Quantifying embodied energy and ghg emissions from irrigation through virtual water transfers in food trade. ACS Sustainable Chemistry & Engineering5, 2119–2128.

Wang L L, Coulter J A, Li L L, Luo Z Z, Chen Y L, Deng X P, Xie J H. 2020. Plastic mulching reduces nitrogen footprint of food crops in China: A meta-analysis. Science of the Total Environment748, 141479.

Wang X J, Zhang J Y, Gao J, Shahid S, Xia X H, Geng Z, Tang L. 2018. The new concept of water resources management in China: Ensuring water security in changing environment. EnvironmentDevelopment and Sustainability20, 897–909.

Wang Y F, Du J Q, Pang Z, Liu Y L, Xue K, Hautier Y, Zhang B, Tang L, Jiang L L, Ji B M, Xu X L, Zhang J, Hu R H, Zhou S T, Wang F, Che R X, Wang D, Zhou C T, Cui X Y, Eisenhauer N, et al. 2022. Unimodal productivity–biodiversity relationship along the gradient of multidimensional resources across Chinese grasslands. National Science Review9, nwac165.

Xia L L, Ti C P, Li B L, Xia Y Q, Yan X Y. 2016. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Science of the Total Environment556, 116–125.

Yan X Y, Akiyama H, Yagi K, Akimoto H. 2009. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 intergovernmental panel on climate change guidelines. Global Biogeochemical Cycles23, 2008GB003299.

Yuan S, Zhan X W, Xu L, Ling X X, Peng S B. 2022. Increase energy use efficiency and economic benefit with reduced environmental footprint in rice production of central China. Environmental Science and Pollution Research29, 7382–7392.

Zhang C, Ju X T, Powlson D, Oenema O, Smith P. 2019. Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China. Environmental Science & Technology53, 6678–6687.

Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H. 2009. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Science49, 2246–2260.

Zhang Q S, Sun J H, Zhang G X, Liu X M, Wu Y F, Sun J X, Hu B T. 2023. Spatiotemporal dynamics of water supply–demand patterns under large-scale paddy expansion: Implications for regional sustainable water resource management. Agricultural Water Management285, 108388.

Zhang W F, Dou Z X, He P, Ju X T, Powlson D, Chadwick D, Norse D, Lu Y L, Zhang Y, Wu L, Chen X P, Cassman K G, Zhang F S. 2013. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences of the United States of America110, 8375–8380.

Zhang W S, Qian C R, Carlson K M, Ge X L, Wang X B, Chen X P. 2021. Increasing farm size to improve energy use efficiency and sustainability in maize production. Food and Energy Security10, e271.

Zhou L Y, Zhu Y H, Kan Z R, Li F M, Zhang F. 2023. The impact of crop residue return on the food–carbon–water–energy nexus in a rice–wheat rotation system under climate warming. Science of the Total Environment894, 164675.

Zhou Y J, Ji Y L, Zhang M, Xu Y Z, Li Z, Tu D B, Wu W G. 2023. Exploring a sustainable rice-cropping system to balance grain yield, environmental footprint and economic benefits in the middle and lower reaches of the Yangtze River in China. Journal of Cleaner Production404, 136988.

[1] Ping’an Zhang, Mo Li, Qiang Fu, Vijay P. Singh, Changzheng Du, Dong Liu, Tianxiao Li, Aizheng Yang.

Dynamic regulation of the irrigation–nitrogen–biochar nexus for the synergy of yield, quality, carbon emission and resource use efficiency in tomato [J]. >Journal of Integrative Agriculture, 2024, 23(2): 680-697.

[2] CHEN Zhong-du, LI Feng-bo, XU Chun-chun, JI Long, FENG Jin-fei, FANG Fu-ping. Spatial and temporal changes of paddy rice ecosystem services in China during the period 1980–2014[J]. >Journal of Integrative Agriculture, 2022, 21(10): 3082-3093.
[3] CHEN Jing-rui, QIN Wen-jing, CHEN Xiao-fen, CAO Wei-dong, QIAN Guo-min, LIU Jia, XU Chang-xu. Application of Chinese milk vetch affects rice yield and soil productivity in a subtropical double-rice cropping system[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2116-2126.
[4] HE Han-ming, LIU Li-na, Shahzad Munir, Nawaz Haider Bashir, WANG Yi, YANG Jing, LI Cheng-yun. Crop diversity and pest management in sustainable agriculture[J]. >Journal of Integrative Agriculture, 2019, 18(9): 1945-1952.
[5] Slaven Jurić,Edyta Đermić,Snježana Topolovec-Pintarić, Marta Bedek,Marko Vinceković. Physicochemical properties and release characteristics of calcium alginate microspheres loaded with Trichoderma viride spores[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2534-2548.
[6] WANG Xiao-long, WANG Wei, GUAN Yue-shan, XIAN Yuan-ran, HUANG Zhi-xin, FENG Hai-yi, CHEN Yong. A joint use of emergy evaluation, carbon footprint and economic analysis for sustainability assessment of grain system in China during 2000–2015[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2822-2835.
No Suggested Reading articles found!