Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1611-1630    DOI: 10.1016/j.jia.2024.05.028
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Recent advances in nano-enabled plant salt tolerance: Methods of application, risk assessment, opportunities and future prospects

Mohammad Nauman Khan1, Yusheng Li1, Yixue Mu1, Haider Sultan1, Amanullah Baloch2, Ismail Din2, Chengcheng Fu2, Jiaqi Li2, Zaid Khan3, Sunjeet Kumar1, Honghong Wu2, Renato Grillo4#, Lixiao Nie1#

1 School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572000, China

2 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

3 College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China

4 São Paulo State University, Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP 15385-000, Brazil

 Highlights 
Different nanomaterials application methods in plants and their barriers and advantages are summarized.  
Recent trends in nano-enabled plant salt tolerance mechanisms are briefly discussed.  
This comprehensive review describes the important role of nanotechnology in achieving plant salt tolerance and future prospects for nano-enabled sustainable agriculture.  

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
盐分是威胁全球粮食安全的重大问题。在各种不同的策略中,纳米技术在非生物逆境下,如盐胁迫下的作物生产中显示出巨大潜力。在本综述中,我们讨论了与纳米材料应用的不同方法相关的环境挑战,包括种子纳米引发、叶面和土壤/根系施用。基于先前的研究,纳米引发使用较少的纳米材料,对环境安全和食物链的影响较小。我们基于纳米材料在农业上的安全、可持续利用的应用方法,详细讨论了预防措施。此外,还总结了抗氧化酶触发纳米材料和直接清除活性氧(ROS)的纳米材料(纳米酶)在植物耐盐性中的作用。纳米材料通过各种解剖、生理和分子机制改善钠(Na+)和钾(K+)的稳态,从而提高植物的耐盐性。然而,纳米材料在调节植物光合作用和激素平衡方面的作用在很大程度上被忽视。我们明确了当前的研究空白,并为今后的研究工作提供了指导。本综述旨在为研究者在利用纳米颗粒进行植物抗逆性研究时,更好地理解纳米颗粒和不同植物相关因子的合理设计提供指导。这将有助于提高纳米颗粒进入植物体内的递送效率。此外,在获得足够的科学知识和更好的理解之后,纳米颗粒可以成为可持续农业的组成部分,节约成本,减少生物安全问题和环境污染。


Abstract  
Salinity is a major issue threatening global food security.  Among the different strategies, nanotechnology has shown tremendous potential for improving crop production under abiotic stresses such as salinity.  In this review, we discuss the environmental challenges associated with the different methods of nanomaterial application, including seed nanopriming, as well as foliar and soil/root application.  Based on previous research, nanopriming uses less nanomaterials and has minimal concerns regarding environmental safety and the food chain.  We discuss in detail the preventive measures for the safe and sustainable use of nanomaterials in agriculture based on the application methods.  Furthermore, we summarize the role of antioxidant enzyme-triggering nanomaterials and direct reactive oxygen species (ROS) scavenging nanomaterials (nanozymes) in plant salt tolerance.  Nanomaterials can improve sodium (Na+) and potassium (K+) homeostasis through various anatomical, physiological, and molecular mechanisms while improving plant salt tolerance.  The role of nanomaterials in modulating plant photosynthesis and hormonal balance has been largely overlooked.  We also identify research gaps and provide guidelines for future research work.  This review provides guidelines for helping researchers to understand the proper design of nanoparticles (NPs) and different plant-related factors while using NPs for plant stress tolerance.  These considerations will help to improve the efficient delivery of NPs into plants.  Furthermore, after gaining sufficient scientific knowledge and better understanding, NPs can be integral to sustainable agriculture, while saving costs and reducing biosafety concerns and environmental pollution.  
Keywords:  nano-enabled plant salt tolerance       nanoparticles        biosafety concerns        delivery efficiency        sustainable agriculture  
Received: 03 February 2024   Online: 24 May 2024   Accepted: 17 April 2024
Fund: 
This project was supported by the Hainan Major Science and Technology Projects, China (ZDKJ202001) and the Hainan Provincial Postdoctoral Research Projects awarded to Mohammad Nauman Khan, China (RZ2300005783).  Renato Grillo thanks the São Paulo Research Foundation, Brazil (FAPESP, #2022/03219–2) and the National Council for Scientific and Technological Development, Brazil (CNPQ, #310846/2022–6).
About author:  #Correspondence Lixiao Nie, E-mail: lxnie@hainanu.edu.cn; Renato Grillo, E-mail: renato.grillo@unesp.br

Cite this article: 

Mohammad Nauman Khan, Yusheng Li, Yixue Mu, Haider Sultan, Amanullah Baloch, Ismail Din, Chengcheng Fu, Jiaqi Li, Zaid Khan, Sunjeet Kumar, Honghong Wu, Renato Grillo, Lixiao Nie. 2025. Recent advances in nano-enabled plant salt tolerance: Methods of application, risk assessment, opportunities and future prospects. Journal of Integrative Agriculture, 24(5): 1611-1630.

Abdoli S, Ghassemi-Golezani K, Alizadeh-Salteh S. 2020. Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environmental Science and Pollution Research27, 36939–36953.

An J, Hu, P, Li F, Wu H, Shen Y, White J C, Tian X, Li Z, Giraldo J P. 2020. Emerging investigator series: Molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science Nano7, 2214–2228.

Apse M P, Aharon G S, Snedden W A, Blumwald E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/Hantiport in ArabidopsisScience285, 1256–1258.

Ashraf M, McNeilly T. 2004. Salinity tolerance in Brassica oilseeds. Critical Reviews in Plant Sciences23, 157–174.

Avellan A, Schwab F, Masion A, Chaurand P, Borschneck D, Vidal V, Rose J, Santaella C, Levard C. 2017. Nanoparticle uptake in plants: Gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environmental Science & Technology51, 8682–8691.

Choudhury F K, Rivero R M, Blumwald E, Mittler R. 2017. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal90, 856–867.

Cui H. 2021. Challenges and approaches to crop improvement through C3-to-C4 engineering. Frontier in Plant Science12, 715391.

Das K, Roychoudhury A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontier in Environmental Science2, 1–13.

Das S, Mukherjee A, Sengupta G, Singh V K. 2019. Overview of nanomaterials synthesis methods, characterization techniques and effect on seed germination. In: Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants: Challenges and Possibilities. Elsevier.

Dehnavi A R, Zahedi M, Ludwiczak A, Perez S C, Piernik A. 2020. Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy10, 859.

Deshpande P, Dapkekar A, Oak M D, Paknikar K M, Rajwade J M. 2017. Zinc complexed chitosan/TPP nanoparticles: A promising micronutrient nanocarrier suited for foliar application. Carbohydrate Polymers165, 394–401.

Dhenadhayalan N, Lin K C, Saleh T A. 2020. Recent advances in functionalized carbon dots toward the design of efficient materials for sensing and catalysis applications. Small16, e1905767.

El-Badri A M, Batool M, Wang C, Hashem A M, Tabl K M, Nishawy E, Kuai J, Zhou G, Wang B. 2021. Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. Ecotoxicology and Environmental Safety225, 112695.

Eichert T, Kurtz A, Steiner U, Goldbach H E. 2008. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiologia Plantarum134, 151–160.

Elshoky H A, Yotsova E, Farghali M A, Farroh K Y, El-Sayed K, Elzorkany H E, Rashkov G, Dobrikova A, Borisova P, Stefanov M, Ali M A, Apostolova E. 2021. Impact of foliar spray of zinc oxide nanoparticles on the photosynthesis of Pisum sativum L. under salt stress. Plant Physiology and Biochemistry167, 607–618.

Etesami H, Fatemi H, Rizwan M. 2021. Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. Ecotoxicology and Environmental Safety225, 112769.

Faizan M, Bhat J A, Chen C, Alyemeni M N, Wijaya L, Ahmad P, Yu F. 2021. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiology and Biochemistry161, 122–130.

Falsini S, Clemente I, Papini A, Tani C, Schiff S, Salvatici M C, Petruccelli R, Benelli C, Giordano C, Gonnelli C, Ristori S. 2019. When sustainable nanochemistry meets agriculture: Lignin nanocapsules for bioactive compound delivery to plantlets. ACS Sustainable Chemistery & Engineering7, 19935–19942.

Farhangi-Abriz S, Torabian S. 2018. Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma255, 953–962.

Fathi A, Zahedi M, Torabian S. 2017. Effect of interaction between salinity and nanoparticles (Fe2O3 and ZnO) on physiological parameters of Zea mays L. Journal of Plant Nutrition40, 2745–2755.

Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour M R, Fotopoulos V, Kimura S. 2020. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavicaScientific Reports10, 1–14.

Gohari G, Panahirad S, Sadeghi M, Akbari A, Zareei E, Zahedi S M, Bahrami M K, Fotopoulos V. 2021. Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticles effectively prime grapevine (Vitis vinifera cv. ‘Sultana’) against salt stress. BMC Plant Biology21, 1–15.

González-Melendi P, Fernández-Pacheco R, Coronado M J, Corredor E, Testillano P S, Risueño M C, Marquina C, Ibarra M R, Rubiales D, Pérez-de-Luque A. 2008. Nanoparticles as smart treatment-delivery systems in plants: Assessment of different techniques of microscopy for their visualization in plant tissues. Annals of Bototany101, 187–195.

Gul B, Ansari R, Flowers T J, Khan M A. 2013. Germination strategies of halophyte seeds under salinity. Environmental and Experimental Botany92, 4–18.

Hatami M, Ghorbanpour M, Salehiarjomand H. 2014. Nano-anatase TiO2 modulates the germination behavior and seedling vigority of some commercially important medicinal and aromatic plants. Journal of Biological and Environmental Sciences8, 53–59.

Hezaveh T A, Pourakbar L, Rahmani F, Alipour H. 2019. Interactive effects of salinity and ZnO nanoparticles on physiological and molecular parameters of rapeseed (Brassica napus L.). Communivations in Soil Science and Plant Analysis50, 698–715.

Hong J, Wang C, Wagner D C, Gardea-Torresdey J L, He F, Rico C M. 2021. Foliar application of nanoparticles: Mechanisms of absorption, transfer, and multiple impacts. Environmental Science Nano8, 1196–1210.

Hossain M S. 2019. Present scenario of global salt affected soils, its management and importance of salinity research. International Research Journal of Biological Sciences1, 1–3.

Hu P, An J, Faulkner M M, Wu H, Li Z, Tian X, Giraldo J P. 2020. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano14, 7970–7986.

Ibrahim E A. 2016. Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physioliogy192, 38–46.

Ismail G, Abou-Zeid H. 2018. The role of priming with biosynthesized silver nanoparticles in the response of Triticum aestivum L. to salt stress. Egyptian Journal of Botantny58, 73–85.

Israel García-López J, Lira-Saldivar R H, Zavala-García F, Olivares-Sáenz E, Niño-Medina G, Ruiz-Torres N A, Méndez-Argüello B, Díaz-Barriga E. 2018. Effects of zinc oxide nanoparticles on growth and antioxidant enzymes of Capsicum chinenseToxicological & Environmental Chemistry100, 560–572.

Jain N, Bhargava A, Pareek V, Akhtar M S Panwar J. 2017. Does seed size and surface anatomy play role in combating phytotoxicity of nanoparticles? Ecotoxicology26, 238–249.

Judy J D, Unrine J M, Rao W, Bertsch P M. 2012. Bioaccumulation of gold nanomaterials by Manduca sexta through dietary uptake of surface contaminated plant tissue. Environmental Science & Technolnolgy22, 12672–12678.

Kader M A, Seidel T, Golldack D, Lindberg S. 2006. Expressions of OsHKT1OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. Journal of Experimental Botany57, 4257–4268.

Kasote D M, Lee J H J, Jayaprakasha G K, Patil B S. 2021. Manganese oxide nanoparticles as safer seed priming agent to improve chlorophyll and antioxidant profiles in watermelon seedlings. Nanomaterials11, 1016.

Khan I, Raza M A, Awan S A, Shah G A, Rizwan M, Ali B, Tariq R, Hassan M J, Alyemeni M N, Brestic M, Zhang X, Ali S, Huang L. 2020. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiology and Biochemistry156, 221–232.

Khan M N. 2016. Nano-titanium dioxide (Nano-TiO2) mitigates NaCl stress by enhancing antioxidative enzymes and accumulation of compatible solutes in tomato (Lycopersicon esculentum Mill.). Journal of Plant Sciences11, 1–11.

Khan M N, Fu C, Li J, Tao Y, Li Y, Hu J, Chen L, Khan Z, Wu H, Li Z. 2023. Seed nanopriming: How do nanomaterials improve seed tolerance to salinity and drought? Chemosphere310, 136911.

Khan M N, Khan Z, Luo T, Liu J, Rizwan M, Zhang J, Xu Z, Wu H, Hu L. 2020. Seed priming with gibberellic acid and melatonin in rapeseed: Consequences for improving yield and seed quality under drought and non-stress conditions. Industrial Crops and Products156, 112850.

Khan M N, Li Y, Fu C, Hu J, Chen L, Yan J, Khan Z, Wu H, Li Z. 2022. CeO2 nanoparticles seed priming increases salicylic acid level and ROS scavenging ability to improve rapeseed salt tolerance. Global Challenges6, 2200025.

Khan M N, Li Y, Khan Z, Chen L, Liu J, Hu J, Wu H, Li Z. 2021. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities. Journal of Nanobiotechnology19, 1–19.

Koelmel J, Leland T, Wang H, Amarasiriwardena D, Xing B. 2013. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environmental Pollution174, 222–228.

Koo Y, Wang J, Zhang Q, Zhu H, Chehab E W, Colvin V L, Alvarez P J J, Braam J. 2015. Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of Arabidopsis thaliana and subsequent ingestion by insect herbivores. Environmental Science & Technolnology49, 626–632.

Larue C, Castillo-Michel H, Sobanska S, Trcera N, Sorieul S, Cécillon L, Ouerdane L, Legros S, Sarret G. 2014. Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. Journal of Hazardous Materials273, 17–26.

Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank A M, Brisset F, Carrière M. 2012. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): Influence of diameter and crystal phase. Science of the Total Environment431, 197–208.

Latef A A H A, Srivastava A K, El-sadek M S A, Kordrostami M, Tran L S P. 2018. Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degradation & Development29, 1065–1073.

Ndaba B, Roopnarain A, Rama H, Maaza M. 2022. Biosynthesized metallic nanoparticles as fertilizers: An emerging precision agriculture strategy. Journal of Integrative Agriculture21, 1225–1242.

Läuchli A, Grattan S R. 2007. Plant growth and development under salinity stress. In: Jenks M A, Hasegawa P M, Jain S M, eds., Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer Netherlands, Dordrecht. pp. 1–32.

Laware S, Raskar S. 2014. Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. International Journal of Current Microbiology and Applied Sciences3, 874–881.

Layet C, Auffan M, Santaella C, Chevassus-Rosset C, Montes M, Ortet P, Barakat M, Collin B, Legros S, Bravin M N, Angeletti B, Kieffer I, Proux O, Hazemann J L, Doelsch E. 2017. Evidence that soil properties and organic coating drive the phytoavailability of cerium oxide nanoparticles. Environmental Science & Technology51, 9756–9764.

Lee S C, Luan S. 2012. ABA signal transduction at the crossroad of biotic and abiotic stress responses. PlantCell & Environment35, 53–60.

Li Y. Hu J, Qi J, Zhao, F, Liu J, Chen L, Chen Lu, Gu J, Wu H, Li Z. 2022. Improvement of leaf K+ retention is a shared mechanism behind CeO2 and Mn3O4 nanoparticles improved rapeseed salt tolerance. Stress Biology2, 46.

Liu J, Fu C, Li G, Khan M N, Wu H. 2021a. ROS homeostasis and plant salt tolerance: Plant nanobiotechnology updates. Sustainabilty13, 3552.

Liu J, Li G, Chen L, Gu J, Wu H, Li Z. 2021b. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+ /Na+ ratio. Journal of Nanobiotechnology19, 153.

Liu K, Harrison M T, Yan H, Liu D L, Meinke H, Hoogenboom G, Wang B, Peng B, Guan K, Jaegermeyr J, Wang E, Zhang F, Yin X, Archontoulis S, Nie L, Badea A, Man J, Wallach D, Zhao J, Benjumea A B, et al. 2023. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nature Commutations14, 765.

Liu Y, Cao X, Yue L, Wang C, Tao M, Wang Z, Xing B. 2022. Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: Reactive oxygen species homeostasis and rhizobacteria regulation. Environmental Pollution299, 118900.

Lorrai R, Boccaccini A, Ruta V, Possenti M, Costantino P, Vittorioso P. 2018. Abscisic acid inhibits hypocotyl elongation acting on gibberellins, DELLA proteins and auxin. AoB Plants10, 1–10.

Lu L, Huang M, Huang Y, Corvini P F X, Ji R, Zhao L. 2020. Mn3O4nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environmental Science Nano7, 1692–1703.

Lv J, Christie P, Zhang S. 2019. Uptake translocation and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environmental Science Nano6, 41–59.

Mahakham W, Sarmah A K, Maensiri S, Theerakulpisut P. 2017. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports7, 1–21.

Mahmoodzadeh H, Nabavi M, Kashefi H. 2015. Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). Journal of Ornamental Plants3, 25–32.

Manickavasagam M, Pavan G, Vasudevan V. 2019. A comprehensive study of the hormetic influence of biosynthesized AgNPs on regenerating rice calli of indica cv. IR64. Scientific Reports9, 1–12.

Manzoor N, Ahmed T, Noman M, Shahid M, Nazir M M, Ali L, Alnusaire T S, Li B, Schulin, R, Wang G. 2021. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Science of the Total Environmental769, 145221.

Marslin G, Sheeba C J, Franklin G. 2017. Nanoparticles alter secondary metabolism in plants via ROS burst. Frontiers in Plant Science8, 1–8.

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. PlantCell & Environment33, 453–467.

Mittler R. 2017. ROS are good. Trends in Plant Science22, 11–19.

Mozafari A A, Ghadakchi Asl A, Ghaderi N. 2018. Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt induced damage under in vitro conditions. Physiology and Molecular Biology of Plants24, 25–35.

Mu Y X, Li Y, Zhang Y, Guo X, Song S, Huang Z, Li L, Ma Q, Khan M N, Nie L X. 2024. A comparative study on the role of conventional, chemical and nanopriming for better salt tolerance during seed germination of direct seeding rice. Journal of Integrative Agriculture, 23, 3998–4017.

Munir T, Rizwan M, Kashif M, Shahzad A, Ali S, Amin N, Zahid R, Alam M F E, Imran M. 2018. Effect of zinc oxide nanoparticles on the growth and Zn uptake in wheat (Triticum aestivum L.) by seed priming method. Digest Journal of Nanomaterials and Biostructures13, 315–323.

Munns R. 2002. Comparative physiology of salt and water stress. PlantCell & Environment25, 239–250.

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology59, 651–681.

Nakasato D Y, Pereira A E S, Oliveira J L, Oliveira H C, Fraceto L F. 2017. Evaluation of the effects of polymeric chitosan/tripolyphosphate and solid lipid nanoparticles on germination of Zea maysBrassica rapa and Pisum sativumEcotoxicology and Environmental Safety142, 369–374.

Newkirk G M, Wu H, Santana I, Giraldo J P. 2018. Catalytic scavenging of plant reactive oxygen species in vivo by anionic cerium oxide nanoparticles. Journal of Visualized Experiments138, e58373.

Noori A, White J C, Newman L A. 2017. Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure. Journal of Nanoparticle Research19, 66.

Pandey K, Lahiani M H, Hicks V K, Keith Hudson M, Green M J, Khodakovskaya M. 2018. Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS ONE13, 1–17.

Parihar P, Singh S, Singh R, Singh V P, Prasad S M. 2015. Effect of salinity stress on plants and its tolerance strategies: A review. Environmental Science and Pollution Research22, 4056–4075.

Peng Y, Chen L, Zhu L, Cui L, Yang L, Wu H, Bie Z. 2022. CsAKT1 is a key gene for the CeO2 nanoparticle’s improved cucumber salt tolerance: A validation from CRISPR-Cas9 lines. Environmental Science Nano9, 4367–4381.

Pereira A D E S, Oliveira H C, Fraceto L F, Santaella C. 2021. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials11, 1–29.

Pollard M, Beisson F, Li Y, Ohlrogge J B. 2008. Building lipid barriers: Biosynthesis of cutin and suberin. Trends in Plant Science13, 236–246.

Qi M, Liu Y, Li T. 2013. Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biological Trace Elements Research156, 323–328.

Quiterio-Gutiérrez T, Ortega-Ortiz H, Cadenas-Pliego G, Hernández-Fuentes A D, Sandoval-Rangel A, Benavides-Mendoza A, Cabrera-de la Fuente M, Juárez-Maldonado A. 2019. The application of selenium and copper nanoparticles modifies the biochemical responses of tomato plants under stress by alternaria solani. Interantional Journal of Molecular Sciences20, 1950.

Rai-Kalal P, Jajoo A. 2021a. Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry160, 341–351.

Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. 2012. Seed germination and vigor. Annual Review of Plant Biololgy63, 507–533.

Rossi L, Zhang W, Lombardini L, Ma X. 2016. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environmental Pollution219, 28–36.

Rossi L, Zhang W, Ma X. 2017. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environmental Pollution229, 132–138.

Sabo-Attwood T, Unrine J M, Stone J W, Murphy C J, Ghoshroy S, Blom D, Bertsch P M, Newman L A. 2012. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology6, 353–360.

Sarkar M M, Pradhan N, Subba R, Saha P, Roy S. 2022. Sugar-terminated carbon-nanodots stimulate osmolyte accumulation and ROS detoxification for the alleviation of salinity stress in Vigna radiataScientific Reports12, 1–17.

Sári M, Ferroudj A, Abdalla N, El-Ramady H, Dobránszki J, Prokisch J. 2023. Nano-management approaches for salt tolerance in plants under field and in vitro conditions. Agronomy13, 2695.

Sarraf M, Vishwakarma K, Kumar V, Arif N, Das S, Johnson R, Janeeshma E, Puthur J T, Aliniaeifard S, Chauhan D K, Fujita M, Hasanuzzaman M. 2022. Metal/metalloid-based nanomaterials for plant abiotic stress tolerance: An overview of the mechanisms. Plants11, 1–31.

Schwab F, Zhai G, Kern M, Turner A, Schnoor J L, Wiesner M R. 2016. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants - Critical review. Nanotoxicology10, 257–278.

Seleiman M F, Aslam M T, Alhammad B A, Hassan M U, Maqbool R, Chattha M U, Khan I, Gitari H I, Uslu O S, Roy R, Battaglia M L. 2022. Salinity stress in wheat: Effects, mechanisms and management strategies. Phyton91, 667–694.

Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White J C, Bindraban P, Dimkpa C. 2015. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research17, 1–21.

Shaikhaldein H O, Al-Qurainy F, Nadeem M, Khan S, Tarroum M, Salih A M, Alansi S, Al-Hashimi A, Alfagham A, Alkahtani J. 2022. Assessment of the impacts of green synthesized silver nanoparticles on maerua oblongifolia shoots under in vitro salt stress. Materials15, 4784.

Sheikhalipour M, Esmaielpour B, Behnamian M, Gohari G, Giglou M T, Vachova P, Rastogi A, Brestic M, Skalicky M. 2021a. Chitosan–selenium nanoparticle (Cs–Se Np) foliar spray alleviates salt stress in bitter melon. Nanomaterials11, 1–23.

Sheikhalipour M, Esmaielpour B, Gohari G, Haghighi M, Jafari H, Farhadi H, Kulak M, Kalisz A. 2021b. Salt stress mitigation via the foliar application of chitosan-functionalized selenium and anatase titanium dioxide nanoparticles in stevia (Stevia rebaudiana Bertoni). Molecules13, 4090.

Shi H, Quintero F J, Pardo J M, Zhu J K. 2002. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell14, 465–477.

Shibli R, Mohusaien R, Abu-Zurayk R, Qudah T, Tahtamouni R. 2022. Silver nanoparticles (Ag NPs) boost mitigation powers of chenopodium quinoa (Q6 Line) grown under in vitro salt-stressing conditions. Water14, 3099.

Shrivastava P, Kumar R. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences22, 123–131.

Shu K, Zhou W, Yang W. 2018. APETALA 2-domain-containing transcription factors: Focusing on abscisic acid and gibberellins antagonism. New Phytologist217, 977–983.

Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee E J. 2013. Functional analyses of nanoparticle toxicity: A comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and Environmental Safety93, 60–67.

Spielman-Sun E, Lombi E, Donner E, Howard D L, Unrine J M, Lowry G V. 2017. Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum). Environmental Science & Technology13, 7361–7368.

Sultan H, Li Y, Ahmed W, Yixue M, Shah A, Faizan M, Ahmad A, Abbas M, Nie L, Khan M N. 2024. Biochar and nano biochar: Enhancing salt resilience in plants and soil while mitigating greenhouse gas emissions: A comprehensive review. Journal of Environmental Management355, 120448.

Tawfik M M, Mohamed M H, Sadak M S, Thalooth A T. 2021. Iron oxide nanoparticles effect on growth, physiological traits and nutritional contents of Moringa oleifera grown in saline environment. Bulletion of National Research Center45, 177.

Taylor A F, Rylott E L, Anderson C W N, Bruce N C. 2014. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE9, e93793.

Tian H, Baxter I R, Lahner B, Reinders A, Salt D E, Ward J M. 2010. Arabidopsis NPCC6/NaKR1 is a phloem mobile metal binding protein necessary for phloem function and root meristem maintenance. Plant Cell22, 3963–3979.

Tighe-Neira R, Carmora E, Recio G, Nunes-Nesi A, Reyes-Diaz M, Alberdi M, Rengel Z, Inostroza-Blancheteau C. 2018. Metallic nanoparticles influence the structure and function of the photosynthetic apparatus in plants. Plant Physiology Biochemistry130, 408–417.

Verma V, Ravindran P, Kumar P P. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology16, 1–10.

Vidyalakshmi N, Thomas R, Aswani R, Gayatri G P, Radhakrishnan E K, Remakanthan A. 2017. Comparative analysis of the effect of silver nanoparticle and silver nitrate on morphological and anatomical parameters of banana under in vitro conditions. Inorganic and Nano-Metal Chemistry47, 1530–1536.

Wahid I, Kumari S, Ahmad R, Hussain S J, Alamri S, Siddiqui M H, Khan M I R. 2020. Silver nanoparticle regulates salt tolerance in wheat through changes in ABA concentration, ion homeostasis, and defensesystems. Biomolecules10, 1–19.

Wang X M, Gao F Q, Ma L L, Liu J, Yin S T, Yang P, Hong F S. 2008. Effects of nano-anatase on ribulose-1,5-bisphosphate carboxylase/oxygenase mRNA expression in spinach. Biological Trace Elements Research126, 280–289.

Wang Z, Li H, Li X, Xin C, Si J, Li S, Li Y, Zheng X, Li X, Zhang Z, Kong L, Wang F. 2020. Nano-ZnO priming induces salt tolerance by promoting photosynthetic carbon assimilation in wheat. Archives of Agronomy and Soil Science66, 1259–1273.

Wu H, Li Z. 2022. Recent advances in nano-enabled agriculture for improving plant performance. The Crop Journal10, 1–26.

Wu H, Shabala L, Shabala S, Giraldo J P. 2018. Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environmental Science Nano5, 1567–1583.

Wu H, Tito N, Giraldo J P. 2017. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano11, 11283–11297.

Xiong T, Austruy A, Pierart A, Shahid M, Schreck E, Mombo S, Dumat C. 2016. Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. Journal of Environmental Sciences46, 16–27.

Xun H, Ma X, Chen J, Yang Z, Liu B, Gao X, Li G, Yu J, Wang L, Pang J. 2017. Zinc oxide nanoparticle exposure triggers different gene expression patterns in maize shoots and roots. Environmental Pollution229, 479–488.

Yao J, Cheng Y, Zhou M, Zhao S, Lin S, Wang X, Wu J, Li S, Wei H. 2018. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chemical Science9, 2927–2933.

Ye Y, Cota-Ruiz K, Hernández-Viezcas J A, Valdés C, Medina-Velo I A, Turley R S, Peralta-Videa J R, Gardea-Torresdey J L. 2020. Manganese nanoparticles control salinity-modulated molecular responses in Capsicum annuum L. through priming: A sustainable approach for agriculture. ACS Sustainable Chemistry & Engineering8, 1427–1436.

Zhang M, Cao Y, Wang Z, Wang Z Q, Shi J, Liang X, Song W, Chen Q, Lai J, Jiang C. 2018. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytologist217, 1161–1176.

Zhao G, Zhao Y, Lou W, Su J, Wei S, Yang X, Wang R, Guan R, Pu H, Shen W. 2019. Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity. Nanoscale11, 10511–10523.

Zhou D, Jin S, Li L, Wang Y, Weng N. 2011. Quantifying the adsorption and uptake of CuO nanoparticles by wheat root based on chemical extractions. Journal of Environmetal Sciences, 23, 1852–1857.

[1] Busiswa NDABA, Ashira ROOPNARAIN, Haripriya RAMA, Malik MAAZA. Biosynthesized metallic nanoparticles as fertilizers: An emerging precision agriculture strategy[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1225-1242.
No Suggested Reading articles found!