Abdoli S, Ghassemi-Golezani K, Alizadeh-Salteh S. 2020. Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environmental Science and Pollution Research, 27, 36939–36953.
An J, Hu, P, Li F, Wu H, Shen Y, White J C, Tian X, Li Z, Giraldo J P. 2020. Emerging investigator series: Molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science Nano, 7, 2214–2228.
Apse M P, Aharon G S, Snedden W A, Blumwald E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 285, 1256–1258.
Ashraf M, McNeilly T. 2004. Salinity tolerance in Brassica oilseeds. Critical Reviews in Plant Sciences, 23, 157–174.
Avellan A, Schwab F, Masion A, Chaurand P, Borschneck D, Vidal V, Rose J, Santaella C, Levard C. 2017. Nanoparticle uptake in plants: Gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environmental Science & Technology, 51, 8682–8691.
Choudhury F K, Rivero R M, Blumwald E, Mittler R. 2017. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90, 856–867.
Cui H. 2021. Challenges and approaches to crop improvement through C3-to-C4 engineering. Frontier in Plant Science, 12, 715391.
Das K, Roychoudhury A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontier in Environmental Science, 2, 1–13.
Das S, Mukherjee A, Sengupta G, Singh V K. 2019. Overview of nanomaterials synthesis methods, characterization techniques and effect on seed germination. In: Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants: Challenges and Possibilities. Elsevier.
Dehnavi A R, Zahedi M, Ludwiczak A, Perez S C, Piernik A. 2020. Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10, 859.
Deshpande P, Dapkekar A, Oak M D, Paknikar K M, Rajwade J M. 2017. Zinc complexed chitosan/TPP nanoparticles: A promising micronutrient nanocarrier suited for foliar application. Carbohydrate Polymers, 165, 394–401.
Dhenadhayalan N, Lin K C, Saleh T A. 2020. Recent advances in functionalized carbon dots toward the design of efficient materials for sensing and catalysis applications. Small, 16, e1905767.
El-Badri A M, Batool M, Wang C, Hashem A M, Tabl K M, Nishawy E, Kuai J, Zhou G, Wang B. 2021. Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. Ecotoxicology and Environmental Safety, 225, 112695.
Eichert T, Kurtz A, Steiner U, Goldbach H E. 2008. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiologia Plantarum, 134, 151–160.
Elshoky H A, Yotsova E, Farghali M A, Farroh K Y, El-Sayed K, Elzorkany H E, Rashkov G, Dobrikova A, Borisova P, Stefanov M, Ali M A, Apostolova E. 2021. Impact of foliar spray of zinc oxide nanoparticles on the photosynthesis of Pisum sativum L. under salt stress. Plant Physiology and Biochemistry, 167, 607–618.
Etesami H, Fatemi H, Rizwan M. 2021. Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. Ecotoxicology and Environmental Safety, 225, 112769.
Faizan M, Bhat J A, Chen C, Alyemeni M N, Wijaya L, Ahmad P, Yu F. 2021. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiology and Biochemistry, 161, 122–130.
Falsini S, Clemente I, Papini A, Tani C, Schiff S, Salvatici M C, Petruccelli R, Benelli C, Giordano C, Gonnelli C, Ristori S. 2019. When sustainable nanochemistry meets agriculture: Lignin nanocapsules for bioactive compound delivery to plantlets. ACS Sustainable Chemistery & Engineering, 7, 19935–19942.
Farhangi-Abriz S, Torabian S. 2018. Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma, 255, 953–962.
Fathi A, Zahedi M, Torabian S. 2017. Effect of interaction between salinity and nanoparticles (Fe2O3 and ZnO) on physiological parameters of Zea mays L. Journal of Plant Nutrition, 40, 2745–2755.
Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour M R, Fotopoulos V, Kimura S. 2020. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports, 10, 1–14.
Gohari G, Panahirad S, Sadeghi M, Akbari A, Zareei E, Zahedi S M, Bahrami M K, Fotopoulos V. 2021. Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticles effectively prime grapevine (Vitis vinifera cv. ‘Sultana’) against salt stress. BMC Plant Biology, 21, 1–15.
González-Melendi P, Fernández-Pacheco R, Coronado M J, Corredor E, Testillano P S, Risueño M C, Marquina C, Ibarra M R, Rubiales D, Pérez-de-Luque A. 2008. Nanoparticles as smart treatment-delivery systems in plants: Assessment of different techniques of microscopy for their visualization in plant tissues. Annals of Bototany, 101, 187–195.
Gul B, Ansari R, Flowers T J, Khan M A. 2013. Germination strategies of halophyte seeds under salinity. Environmental and Experimental Botany, 92, 4–18.
Hatami M, Ghorbanpour M, Salehiarjomand H. 2014. Nano-anatase TiO2 modulates the germination behavior and seedling vigority of some commercially important medicinal and aromatic plants. Journal of Biological and Environmental Sciences, 8, 53–59.
Hezaveh T A, Pourakbar L, Rahmani F, Alipour H. 2019. Interactive effects of salinity and ZnO nanoparticles on physiological and molecular parameters of rapeseed (Brassica napus L.). Communivations in Soil Science and Plant Analysis, 50, 698–715.
Hong J, Wang C, Wagner D C, Gardea-Torresdey J L, He F, Rico C M. 2021. Foliar application of nanoparticles: Mechanisms of absorption, transfer, and multiple impacts. Environmental Science Nano, 8, 1196–1210.
Hossain M S. 2019. Present scenario of global salt affected soils, its management and importance of salinity research. International Research Journal of Biological Sciences, 1, 1–3.
Hu P, An J, Faulkner M M, Wu H, Li Z, Tian X, Giraldo J P. 2020. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano, 14, 7970–7986.
Ibrahim E A. 2016. Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physioliogy, 192, 38–46.
Ismail G, Abou-Zeid H. 2018. The role of priming with biosynthesized silver nanoparticles in the response of Triticum aestivum L. to salt stress. Egyptian Journal of Botantny, 58, 73–85.
Israel García-López J, Lira-Saldivar R H, Zavala-García F, Olivares-Sáenz E, Niño-Medina G, Ruiz-Torres N A, Méndez-Argüello B, Díaz-Barriga E. 2018. Effects of zinc oxide nanoparticles on growth and antioxidant enzymes of Capsicum chinense. Toxicological & Environmental Chemistry, 100, 560–572.
Jain N, Bhargava A, Pareek V, Akhtar M S Panwar J. 2017. Does seed size and surface anatomy play role in combating phytotoxicity of nanoparticles? Ecotoxicology, 26, 238–249.
Judy J D, Unrine J M, Rao W, Bertsch P M. 2012. Bioaccumulation of gold nanomaterials by Manduca sexta through dietary uptake of surface contaminated plant tissue. Environmental Science & Technolnolgy, 22, 12672–12678.
Kader M A, Seidel T, Golldack D, Lindberg S. 2006. Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. Journal of Experimental Botany, 57, 4257–4268.
Kasote D M, Lee J H J, Jayaprakasha G K, Patil B S. 2021. Manganese oxide nanoparticles as safer seed priming agent to improve chlorophyll and antioxidant profiles in watermelon seedlings. Nanomaterials, 11, 1016.
Khan I, Raza M A, Awan S A, Shah G A, Rizwan M, Ali B, Tariq R, Hassan M J, Alyemeni M N, Brestic M, Zhang X, Ali S, Huang L. 2020. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiology and Biochemistry, 156, 221–232.
Khan M N. 2016. Nano-titanium dioxide (Nano-TiO2) mitigates NaCl stress by enhancing antioxidative enzymes and accumulation of compatible solutes in tomato (Lycopersicon esculentum Mill.). Journal of Plant Sciences, 11, 1–11.
Khan M N, Fu C, Li J, Tao Y, Li Y, Hu J, Chen L, Khan Z, Wu H, Li Z. 2023. Seed nanopriming: How do nanomaterials improve seed tolerance to salinity and drought? Chemosphere, 310, 136911.
Khan M N, Khan Z, Luo T, Liu J, Rizwan M, Zhang J, Xu Z, Wu H, Hu L. 2020. Seed priming with gibberellic acid and melatonin in rapeseed: Consequences for improving yield and seed quality under drought and non-stress conditions. Industrial Crops and Products, 156, 112850.
Khan M N, Li Y, Fu C, Hu J, Chen L, Yan J, Khan Z, Wu H, Li Z. 2022. CeO2 nanoparticles seed priming increases salicylic acid level and ROS scavenging ability to improve rapeseed salt tolerance. Global Challenges, 6, 2200025.
Khan M N, Li Y, Khan Z, Chen L, Liu J, Hu J, Wu H, Li Z. 2021. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities. Journal of Nanobiotechnology, 19, 1–19.
Koelmel J, Leland T, Wang H, Amarasiriwardena D, Xing B. 2013. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environmental Pollution, 174, 222–228.
Koo Y, Wang J, Zhang Q, Zhu H, Chehab E W, Colvin V L, Alvarez P J J, Braam J. 2015. Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of Arabidopsis thaliana and subsequent ingestion by insect herbivores. Environmental Science & Technolnology, 49, 626–632.
Larue C, Castillo-Michel H, Sobanska S, Trcera N, Sorieul S, Cécillon L, Ouerdane L, Legros S, Sarret G. 2014. Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. Journal of Hazardous Materials, 273, 17–26.
Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank A M, Brisset F, Carrière M. 2012. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): Influence of diameter and crystal phase. Science of the Total Environment, 431, 197–208.
Latef A A H A, Srivastava A K, El-sadek M S A, Kordrostami M, Tran L S P. 2018. Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degradation & Development, 29, 1065–1073.
Ndaba B, Roopnarain A, Rama H, Maaza M. 2022. Biosynthesized metallic nanoparticles as fertilizers: An emerging precision agriculture strategy. Journal of Integrative Agriculture, 21, 1225–1242.
Läuchli A, Grattan S R. 2007. Plant growth and development under salinity stress. In: Jenks M A, Hasegawa P M, Jain S M, eds., Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer Netherlands, Dordrecht. pp. 1–32.
Laware S, Raskar S. 2014. Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. International Journal of Current Microbiology and Applied Sciences, 3, 874–881.
Layet C, Auffan M, Santaella C, Chevassus-Rosset C, Montes M, Ortet P, Barakat M, Collin B, Legros S, Bravin M N, Angeletti B, Kieffer I, Proux O, Hazemann J L, Doelsch E. 2017. Evidence that soil properties and organic coating drive the phytoavailability of cerium oxide nanoparticles. Environmental Science & Technology, 51, 9756–9764.
Lee S C, Luan S. 2012. ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant, Cell & Environment, 35, 53–60.
Li Y. Hu J, Qi J, Zhao, F, Liu J, Chen L, Chen Lu, Gu J, Wu H, Li Z. 2022. Improvement of leaf K+ retention is a shared mechanism behind CeO2 and Mn3O4 nanoparticles improved rapeseed salt tolerance. Stress Biology, 2, 46.
Liu J, Fu C, Li G, Khan M N, Wu H. 2021a. ROS homeostasis and plant salt tolerance: Plant nanobiotechnology updates. Sustainabilty, 13, 3552.
Liu J, Li G, Chen L, Gu J, Wu H, Li Z. 2021b. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+ /Na+ ratio. Journal of Nanobiotechnology, 19, 153.
Liu K, Harrison M T, Yan H, Liu D L, Meinke H, Hoogenboom G, Wang B, Peng B, Guan K, Jaegermeyr J, Wang E, Zhang F, Yin X, Archontoulis S, Nie L, Badea A, Man J, Wallach D, Zhao J, Benjumea A B, et al. 2023. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nature Commutations, 14, 765.
Liu Y, Cao X, Yue L, Wang C, Tao M, Wang Z, Xing B. 2022. Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: Reactive oxygen species homeostasis and rhizobacteria regulation. Environmental Pollution, 299, 118900.
Lorrai R, Boccaccini A, Ruta V, Possenti M, Costantino P, Vittorioso P. 2018. Abscisic acid inhibits hypocotyl elongation acting on gibberellins, DELLA proteins and auxin. AoB Plants, 10, 1–10.
Lu L, Huang M, Huang Y, Corvini P F X, Ji R, Zhao L. 2020. Mn3O4nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environmental Science Nano, 7, 1692–1703.
Lv J, Christie P, Zhang S. 2019. Uptake translocation and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environmental Science Nano, 6, 41–59.
Mahakham W, Sarmah A K, Maensiri S, Theerakulpisut P. 2017. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports, 7, 1–21.
Mahmoodzadeh H, Nabavi M, Kashefi H. 2015. Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). Journal of Ornamental Plants, 3, 25–32.
Manickavasagam M, Pavan G, Vasudevan V. 2019. A comprehensive study of the hormetic influence of biosynthesized AgNPs on regenerating rice calli of indica cv. IR64. Scientific Reports, 9, 1–12.
Manzoor N, Ahmed T, Noman M, Shahid M, Nazir M M, Ali L, Alnusaire T S, Li B, Schulin, R, Wang G. 2021. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Science of the Total Environmental, 769, 145221.
Marslin G, Sheeba C J, Franklin G. 2017. Nanoparticles alter secondary metabolism in plants via ROS burst. Frontiers in Plant Science, 8, 1–8.
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33, 453–467.
Mittler R. 2017. ROS are good. Trends in Plant Science, 22, 11–19.
Mozafari A A, Ghadakchi Asl A, Ghaderi N. 2018. Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt induced damage under in vitro conditions. Physiology and Molecular Biology of Plants, 24, 25–35.
Mu Y X, Li Y, Zhang Y, Guo X, Song S, Huang Z, Li L, Ma Q, Khan M N, Nie L X. 2024. A comparative study on the role of conventional, chemical and nanopriming for better salt tolerance during seed germination of direct seeding rice. Journal of Integrative Agriculture, 23, 3998–4017.
Munir T, Rizwan M, Kashif M, Shahzad A, Ali S, Amin N, Zahid R, Alam M F E, Imran M. 2018. Effect of zinc oxide nanoparticles on the growth and Zn uptake in wheat (Triticum aestivum L.) by seed priming method. Digest Journal of Nanomaterials and Biostructures, 13, 315–323.
Munns R. 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment, 25, 239–250.
Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.
Nakasato D Y, Pereira A E S, Oliveira J L, Oliveira H C, Fraceto L F. 2017. Evaluation of the effects of polymeric chitosan/tripolyphosphate and solid lipid nanoparticles on germination of Zea mays, Brassica rapa and Pisum sativum. Ecotoxicology and Environmental Safety, 142, 369–374.
Newkirk G M, Wu H, Santana I, Giraldo J P. 2018. Catalytic scavenging of plant reactive oxygen species in vivo by anionic cerium oxide nanoparticles. Journal of Visualized Experiments, 138, e58373.
Noori A, White J C, Newman L A. 2017. Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure. Journal of Nanoparticle Research, 19, 66.
Pandey K, Lahiani M H, Hicks V K, Keith Hudson M, Green M J, Khodakovskaya M. 2018. Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS ONE, 13, 1–17.
Parihar P, Singh S, Singh R, Singh V P, Prasad S M. 2015. Effect of salinity stress on plants and its tolerance strategies: A review. Environmental Science and Pollution Research, 22, 4056–4075.
Peng Y, Chen L, Zhu L, Cui L, Yang L, Wu H, Bie Z. 2022. CsAKT1 is a key gene for the CeO2 nanoparticle’s improved cucumber salt tolerance: A validation from CRISPR-Cas9 lines. Environmental Science Nano, 9, 4367–4381.
Pereira A D E S, Oliveira H C, Fraceto L F, Santaella C. 2021. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials, 11, 1–29.
Pollard M, Beisson F, Li Y, Ohlrogge J B. 2008. Building lipid barriers: Biosynthesis of cutin and suberin. Trends in Plant Science, 13, 236–246.
Qi M, Liu Y, Li T. 2013. Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biological Trace Elements Research, 156, 323–328.
Quiterio-Gutiérrez T, Ortega-Ortiz H, Cadenas-Pliego G, Hernández-Fuentes A D, Sandoval-Rangel A, Benavides-Mendoza A, Cabrera-de la Fuente M, Juárez-Maldonado A. 2019. The application of selenium and copper nanoparticles modifies the biochemical responses of tomato plants under stress by alternaria solani. Interantional Journal of Molecular Sciences, 20, 1950.
Rai-Kalal P, Jajoo A. 2021a. Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry, 160, 341–351.
Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. 2012. Seed germination and vigor. Annual Review of Plant Biololgy, 63, 507–533.
Rossi L, Zhang W, Lombardini L, Ma X. 2016. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environmental Pollution, 219, 28–36.
Rossi L, Zhang W, Ma X. 2017. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environmental Pollution, 229, 132–138.
Sabo-Attwood T, Unrine J M, Stone J W, Murphy C J, Ghoshroy S, Blom D, Bertsch P M, Newman L A. 2012. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology, 6, 353–360.
Sarkar M M, Pradhan N, Subba R, Saha P, Roy S. 2022. Sugar-terminated carbon-nanodots stimulate osmolyte accumulation and ROS detoxification for the alleviation of salinity stress in Vigna radiata. Scientific Reports, 12, 1–17.
Sári M, Ferroudj A, Abdalla N, El-Ramady H, Dobránszki J, Prokisch J. 2023. Nano-management approaches for salt tolerance in plants under field and in vitro conditions. Agronomy, 13, 2695.
Sarraf M, Vishwakarma K, Kumar V, Arif N, Das S, Johnson R, Janeeshma E, Puthur J T, Aliniaeifard S, Chauhan D K, Fujita M, Hasanuzzaman M. 2022. Metal/metalloid-based nanomaterials for plant abiotic stress tolerance: An overview of the mechanisms. Plants, 11, 1–31.
Schwab F, Zhai G, Kern M, Turner A, Schnoor J L, Wiesner M R. 2016. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants - Critical review. Nanotoxicology, 10, 257–278.
Seleiman M F, Aslam M T, Alhammad B A, Hassan M U, Maqbool R, Chattha M U, Khan I, Gitari H I, Uslu O S, Roy R, Battaglia M L. 2022. Salinity stress in wheat: Effects, mechanisms and management strategies. Phyton, 91, 667–694.
Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White J C, Bindraban P, Dimkpa C. 2015. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 17, 1–21.
Shaikhaldein H O, Al-Qurainy F, Nadeem M, Khan S, Tarroum M, Salih A M, Alansi S, Al-Hashimi A, Alfagham A, Alkahtani J. 2022. Assessment of the impacts of green synthesized silver nanoparticles on maerua oblongifolia shoots under in vitro salt stress. Materials, 15, 4784.
Sheikhalipour M, Esmaielpour B, Behnamian M, Gohari G, Giglou M T, Vachova P, Rastogi A, Brestic M, Skalicky M. 2021a. Chitosan–selenium nanoparticle (Cs–Se Np) foliar spray alleviates salt stress in bitter melon. Nanomaterials, 11, 1–23.
Sheikhalipour M, Esmaielpour B, Gohari G, Haghighi M, Jafari H, Farhadi H, Kulak M, Kalisz A. 2021b. Salt stress mitigation via the foliar application of chitosan-functionalized selenium and anatase titanium dioxide nanoparticles in stevia (Stevia rebaudiana Bertoni). Molecules, 13, 4090.
Shi H, Quintero F J, Pardo J M, Zhu J K. 2002. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell, 14, 465–477.
Shibli R, Mohusaien R, Abu-Zurayk R, Qudah T, Tahtamouni R. 2022. Silver nanoparticles (Ag NPs) boost mitigation powers of chenopodium quinoa (Q6 Line) grown under in vitro salt-stressing conditions. Water, 14, 3099.
Shrivastava P, Kumar R. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22, 123–131.
Shu K, Zhou W, Yang W. 2018. APETALA 2-domain-containing transcription factors: Focusing on abscisic acid and gibberellins antagonism. New Phytologist, 217, 977–983.
Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee E J. 2013. Functional analyses of nanoparticle toxicity: A comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and Environmental Safety, 93, 60–67.
Spielman-Sun E, Lombi E, Donner E, Howard D L, Unrine J M, Lowry G V. 2017. Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum). Environmental Science & Technology, 13, 7361–7368.
Sultan H, Li Y, Ahmed W, Yixue M, Shah A, Faizan M, Ahmad A, Abbas M, Nie L, Khan M N. 2024. Biochar and nano biochar: Enhancing salt resilience in plants and soil while mitigating greenhouse gas emissions: A comprehensive review. Journal of Environmental Management, 355, 120448.
Tawfik M M, Mohamed M H, Sadak M S, Thalooth A T. 2021. Iron oxide nanoparticles effect on growth, physiological traits and nutritional contents of Moringa oleifera grown in saline environment. Bulletion of National Research Center, 45, 177.
Taylor A F, Rylott E L, Anderson C W N, Bruce N C. 2014. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE, 9, e93793.
Tian H, Baxter I R, Lahner B, Reinders A, Salt D E, Ward J M. 2010. Arabidopsis NPCC6/NaKR1 is a phloem mobile metal binding protein necessary for phloem function and root meristem maintenance. Plant Cell, 22, 3963–3979.
Tighe-Neira R, Carmora E, Recio G, Nunes-Nesi A, Reyes-Diaz M, Alberdi M, Rengel Z, Inostroza-Blancheteau C. 2018. Metallic nanoparticles influence the structure and function of the photosynthetic apparatus in plants. Plant Physiology Biochemistry, 130, 408–417.
Verma V, Ravindran P, Kumar P P. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16, 1–10.
Vidyalakshmi N, Thomas R, Aswani R, Gayatri G P, Radhakrishnan E K, Remakanthan A. 2017. Comparative analysis of the effect of silver nanoparticle and silver nitrate on morphological and anatomical parameters of banana under in vitro conditions. Inorganic and Nano-Metal Chemistry, 47, 1530–1536.
Wahid I, Kumari S, Ahmad R, Hussain S J, Alamri S, Siddiqui M H, Khan M I R. 2020. Silver nanoparticle regulates salt tolerance in wheat through changes in ABA concentration, ion homeostasis, and defensesystems. Biomolecules, 10, 1–19.
Wang X M, Gao F Q, Ma L L, Liu J, Yin S T, Yang P, Hong F S. 2008. Effects of nano-anatase on ribulose-1,5-bisphosphate carboxylase/oxygenase mRNA expression in spinach. Biological Trace Elements Research, 126, 280–289.
Wang Z, Li H, Li X, Xin C, Si J, Li S, Li Y, Zheng X, Li X, Zhang Z, Kong L, Wang F. 2020. Nano-ZnO priming induces salt tolerance by promoting photosynthetic carbon assimilation in wheat. Archives of Agronomy and Soil Science, 66, 1259–1273.
Wu H, Li Z. 2022. Recent advances in nano-enabled agriculture for improving plant performance. The Crop Journal, 10, 1–26.
Wu H, Shabala L, Shabala S, Giraldo J P. 2018. Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environmental Science Nano, 5, 1567–1583.
Wu H, Tito N, Giraldo J P. 2017. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano, 11, 11283–11297.
Xiong T, Austruy A, Pierart A, Shahid M, Schreck E, Mombo S, Dumat C. 2016. Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. Journal of Environmental Sciences, 46, 16–27.
Xun H, Ma X, Chen J, Yang Z, Liu B, Gao X, Li G, Yu J, Wang L, Pang J. 2017. Zinc oxide nanoparticle exposure triggers different gene expression patterns in maize shoots and roots. Environmental Pollution, 229, 479–488.
Yao J, Cheng Y, Zhou M, Zhao S, Lin S, Wang X, Wu J, Li S, Wei H. 2018. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chemical Science, 9, 2927–2933.
Ye Y, Cota-Ruiz K, Hernández-Viezcas J A, Valdés C, Medina-Velo I A, Turley R S, Peralta-Videa J R, Gardea-Torresdey J L. 2020. Manganese nanoparticles control salinity-modulated molecular responses in Capsicum annuum L. through priming: A sustainable approach for agriculture. ACS Sustainable Chemistry & Engineering, 8, 1427–1436.
Zhang M, Cao Y, Wang Z, Wang Z Q, Shi J, Liang X, Song W, Chen Q, Lai J, Jiang C. 2018. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytologist, 217, 1161–1176.
Zhao G, Zhao Y, Lou W, Su J, Wei S, Yang X, Wang R, Guan R, Pu H, Shen W. 2019. Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity. Nanoscale, 11, 10511–10523.
Zhou D, Jin S, Li L, Wang Y, Weng N. 2011. Quantifying the adsorption and uptake of CuO nanoparticles by wheat root based on chemical extractions. Journal of Environmetal Sciences, 23, 1852–1857.
|