Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (11): 3302-3313    DOI: 10.1016/j.jia.2022.08.087
Special Issue: 动物营养合辑Animal Nutrition
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Long-term effect of subacute ruminal acidosis on the morphology and function of rumen epithelial barrier in lactating goats
HU Hong-lian1*, YANG Shu-qing2*, CHENG Meng2, SONG Li-wen1, XU Ming2, GAO Min1YU Zhong-tang3

1Institue of Animal Nutrition and Feed, Inner Mongolia Academy of Agriculture & Animal Husbandry Sciences, Hohhot 010031, P.R.China 

2College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R.China

3Department of Animal Sciences, The Ohio State University, Columbus 43210, USA

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

高谷物日粮诱导的亚急性瘤胃酸中毒(SARA)会损害反刍动物的瘤胃上皮屏障功能,但SARA是否会持续性损害瘤胃上皮屏障的形态结构和功能还尚不清楚。本研究旨在以泌乳山羊为动物模型,研究SARA是否对瘤胃上皮的形态结构、通透性及参与上皮屏障功能的关键基因表达具有持续性影响。选取12只安装有永久性瘤胃瘘管的泌乳中期奶山羊,随机分为对照组(Ctrln=4)和SARA组(n=8),对照组试验动物饲喂NFC/NDF比为1.40的基础饲粮,SARA组依次饲喂NFC/NDF比为1.401.792.313.23四种饲粮诱导试验动物发生SARASARA诱导成功后从SARA组中随机选取4只患病动物让其自由采食混合粗饲料4周使其恢复,即post-SARA组。采用pH值监测系统连续监测瘤胃pH值以判定SARA的严重程度。采集瘤胃腹囊上皮组织,利用透射电镜、尤斯灌流室、PCRWestern blot等先进技术检测瘤胃上皮的形态结构和功能。结果表明:与对照组相比1SARA组瘤胃上皮乳头长度、宽度、表面积和角质层厚度显著增加(P<0.05),棘基层厚度和上皮总厚度则显著降低(P<0.05)post-SARA组这些参数则趋向于恢复到对照组水平(P>0.05)同时透射电镜结果显示,SARA减少了瘤胃上皮紧密连接数量加宽了上皮细胞之间的间隙。(2SARA组和post-SARA组瘤胃上皮短路电流(Isc)、组织导电性(Gt)以及辣根过物氧化酶(HRP)通过瘤胃上皮的流速均显著增加(P<0.05),这表明SARA可引起瘤胃上皮通透性持续升高,进而导致屏障功能长期受损。(3SARA组和post-SARA组瘤胃上皮紧密连接蛋白CLDN1, OCLN and ZO-1mRNA和蛋白表达量均显著下调(P<0.01)由此可见,SARA可导致瘤胃上皮屏障结构和功能持续受损,这与瘤胃上皮紧密连接蛋白表达下调密切相关,而且瘤胃上皮屏障功能的恢复滞后于形态结构的恢复。



Abstract  

Grain-induced subacute ruminal acidosis (SARA) impairs rumen epithelial barrier function, but it is yet to be determined if SARA can cause persistent damage to the morphology and function of the rumen epithelial barrier.  The objective of the present study was to investigate if SARA has persistent effects on the morphological structure and permeability of ruminal epithelium and the expression of the genes involved in epithelial barrier function using a lactating goat model.  Twelve mid-lactating Saanen goats with rumen cannulas were randomly assigned to 1 of 2 groups: control group (Ctrl, n=4) fed a basal diet with a non-fiber carbohydrate (NFC) to neutral detergent fiber (NDF) ratio of 1.40, and SARA group (SARA, n=8) fed the same basal diet but with increasing NFC to NDF ratio from 1.4 to 1.79, 2.31, and 3.23 overtime to induce SARA.  At the end of the SARA challenge (post-SARA), 4 goats were randomly selected from the SARA group and fed only hay mixture ad libitum for another 4 weeks to allow for restitution (post-SARA).  Ruminal pH was continuously recorded to monitor the severity of SARA.  Samples of the ventral ruminal epithelium were collected after slaughter to examine the structural and functional changes of the ruminal epithelium using transmission electron microscopy (TEM), Ussing chambers, qRT-PCR, and Western bolt analyses.  Compared with the Ctrl group, ruminal papilla length, width, surface area and thickness of stratum corneum increased (P<0.05), while stratum spinosum and basale thickness, and total depth of the epithelium decreased (P<0.05) in the SARA group.  These changes diminished or tended to return to the levels of the Ctrl group in the post-SARA group (P>0.05).  The SARA challenge also decreased cellular junction and widened the intercellular space between epithelial cells.  Rumen transepithelial short-circuit current (Isc), tissue conductance (Gt), and mucosa-to-serosa flux of paracellular horseradish peroxidase (HRP) all increased (P<0.05) both in the SARA and post-SARA groups, which indicates that SARA can induce a sustained increase in epithelial permeability and barrier dysfunction.  Moreover, the mRNA and protein expressions of CLDN1, OCLN and ZO-1 were down-regulated (P<0.01) in both the SARA and post-SARA groups.  The results of this study showed that SARA could result in sustained epithelial barrier dysfunction, at both structural and functional levels, which is associated with decreased expression of rumen epithelial tight junction proteins, and the restitution of rumen epithelial barrier function is slower than that of its morphology.

Keywords:  subacute ruminal acidosis       epithelial morphology        permeability        tight junction proteins        restitution  
Received: 06 May 2021   Accepted: 18 March 2022
Fund: 

This work was supported by the National Natural Science Foundation of China (31472124), the Natural Science Foundation of Inner Mongolia, China (2019MS03031), the earmarked fund for China Agriculture Research System (CARS-36), the Innovation Fund of Inner Mongolia Agricultural and Animal Husbandry, China (2021CXJJM02), and a China Scholarship Council (Beijing) fellowship to Hu Honglian for training at the Ohio State University, USA (201909150001).

About author:  HU Hong-lian, E-mail: honglianhu2010@163.com; Correspondence GAO Min, Tel: +86-471-5294398, E-mail: gmyh1588@126.com; YU Zhong-tang, Tel: +1-614-2923057, E-mail: yu.226@osu.edu * These authors contributed equally to this study.

Cite this article: 

HU Hong-lian, YANG Shu-qing, CHENG Meng, SONG Li-wen, XU Ming, GAO Min, YU Zhong-tang. 2022. Long-term effect of subacute ruminal acidosis on the morphology and function of rumen epithelial barrier in lactating goats. Journal of Integrative Agriculture, 21(11): 3302-3313.

Albornoz R I, Aschenbach J R, Barreda D R, Penner G B. 2013. Feed restriction reduces short-chain fatty acid absorption across the reticulo-rumen of beef cattle independent of diet. Journal of Animal Science, 91, 4730–4738.
 Al-Sadi R, Khatib K, Guo S H, Ye D M, Youssef M, Ma T. 2011. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. American Journal of Physiology (Gastrointestinal and Liver Physiology), 300, G1054–G1064.
Aschenbach J R, Zebeli Q, Patra A K, Greco G, Amasheh S, Penner G B. 2019. Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow. Journal of Dairy Science, 102, 1866–1882.
Chang J X, Chen S, Ma L P, Jiang L Y, Chen J W, Chang R M, Wen L Q, Wu W, Jiang Z P, Huang Z T. 2005. Functional and morphological changes of the gut barrier during the restitution process after hemorrhagic shock. World Journal of Gastroenterology, 11, 5488–5491.
Cheng M. 2016. Effects of subacute ruminal acidosis on rumen epithelium permeability and intercellular junction protein expression in dairy goats. MSc thesis, Inner Mongolia Agricultural University, China. (in Chinese)
Cheng M, Yang S Q, Gao M, Xie T Y, Sun Y Y, Hu H L. 2016. Effects of subacute ruminal acidosis on ruminal epithelial morphology and permeability in dairy goats. Chinese Journal of Animal Nutrition, 28, 3311–3319. (in Chinese)
Ciccocioppo R, Finamore A, Ara C, Sabatino A D, Mengheri E, Corazza G R. 2006. Altered expression, localization, and phosphorylation of epithelial junctional proteins in celiac disease. American Journal of Clinical Pathology, 125, 502–511.
Emmanuel D G V, Madsen K L, Churchill T A, Dunn S M, Ametaj B N. 2007. Acidosis and lipopolysaccharide from Escherichia coli B: 055 cause hyperpermeability of rumen and colon tissues. Journal of Dairy Science, 90, 5552–5557.
Gaebel G, Martens H, Suendermann M, Galfi P. 1987. The effect of diet, intraruminal pH and osmolarity on sodium, chloride and magnesium absorption from the temporarily isolated and washed reticulo-rumen of sheep. Quarterly Journal of Experimental Physiology, 72, 501–511. 
Goodlad R A. 1981. Some effects of diet on the mitotic index and the cell cycle of the ruminal epithelium of sheep. Quarterly Journal of Experimental Physiology, 66, 487–499.
Gozho G N, Plaizier J C, Krause D O, Kennedy A D, Wittenberg K M. 2005. Subacute ruminal acidosis induces ruminal lipopolysaccharide endototoxin release and triggers an inflammatory response. Journal of Dairy Science, 88, 1399–1403.
Hu C H, Xiao K, Luan Z S, Song J. 2013. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. Journal of Animal Science, 9, 1094–1101.
Jin G L. 1989. Nutrient requirements of dairy goats. Journal of Animal Science and Veterinary, 2, 7–12. (in Chinese)
Khafipour E, Krause D O, Plaizier J C. 2009. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. Journal of Dairy Science, 92, 1060–1070.
Kleen J L, Hooijer G A, Rehage J, Noordhuizen J P T M. 2003. Subacute ruminal acidosis (SARA): A review. Journal of Veterinary Medical Science, 50, 406–414.
Klevenhusen F, Hollmann M, Podstatzky-Lichtenstein L, Krametter-Frötscher R, Aschenbach J R, Zebeli Q. 2013. Feeding barley grain-rich diets altered electrophysiological properties and permeability of the ruminal wall in a goat model. Journal of Dairy Science, 96, 2293–2302.
Liu J H, Xu T T, Liu Y J, Zhu W Y, Mao S Y. 2013. A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats. Amercian Journal of Physiology (Regulatory, Integrative and Comparative Physiology), 305, R232–R241.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative pcr and the 2(–delta delta C(t)) method. Methods, 25, 402–408.
 Lodemann U, Martens H. 2006. Effects of diet and osmotic pressure on Na+ transport and tissue conductance of sheep isolated rumen epithelium. Expermental Physiology, 91, 539–550.
Markov A G, Aschenbach J R, Amasheh S. 2015. Claudin clusters as determinations of epithelial barrier function. IUBMB Life, 67, 29–35. 
Matter K, Balda M S. 2003. Functional analysis of tight junctions. Methods, 30, 228–234.
Meissner S, Hagen F, Deiner C, Günzel D, Greco G, Shen Z M, Aschenbach J R. 2017. Key role of short-chain fatty acids in epithelial barrier failure during ruminal acidosis. Journal of Dairy Science, 100, 6662–6675.
Pederzolli R A, Van Kessel A G, Campbell J, Hendrick S, Wood K M, Penner G B. 2018. Effect of ruminal acidosis and short-term low feed intake on indicators of gastrointestinal barrier function in Holstein steers. Journal of Animal Science, 96, 108–125.
Penner G B, Beauchemin K A, Mutsvangwa T. 2007. Severity of ruminal acidosis in primiparous Holstein cows during the periparturient period. Journal of Dairy Science, 90, 365–375.
Steele M A, AlZahal O, Hook S E, Croom J, McBride B W. 2009. Ruminal acidosis and the rapid onset of ruminal parakertosis in a mature dairy cow: a case report. Acta Veterinaria Scandinavica, 51, 39–44.
Steele M A, Croom J, Kahler M, AlZahal O, Hook S E, Plaizier K, McBride B W. 2011. Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis. American Journal of Physiology (Regulatory, Integrative and Comparative Physiology), 300, R1515–R1523.
Steele M A, Penner G B, Chaucheyras-Durand F, Guan L L. 2016. Development and physiology of the rumen and the lower gut: Targets for improving gut health. Journal of Dairy Science, 99, 4955–4966.
Sun Y Y, Cheng M, Xu M, Song L W, Gao M, Hu H L. 2018. The effects of subacute ruminal acidosis on rumen epithelium barrier function in dairy goats. Small Ruminant Research, 169, 1–7.
Tsukita S, Furuse M, Itoh M. 2001. Multifunctional strands in tight junctions. Nature Reviews Molecular Cell Biology, 2, 285–293.
Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M, Tssukita S. 2006. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell, 126, 741–754.
Wang M Y, Li Y, Gao M, Song L W, Xu M, Zhao X L, Jia Y, Zhao M, Sun Y Y, Hu H L. 2020. Effects of subacute ruminal acidosis on colon epithelial morphological structure, permeability, and expression of key tight junction proteins in dairy goats. Journal of Dairy Science, 104, 4260–4270.
Wu Y H. 2013. Effects of subacute ruminal acidosis on proliferation and apoptosis of rumen and omasum epithelial cell. MSc thesis, Inner Mongolia Agricultural University, China. (in Chinese)
Yang S Q. 2014. Study on effect of subacute ruminal acidosis on rumen epithelial barrier function in dairy goats. MSc thesis, Inner Mongolia Agricultural University, China. (in Chinese)
Zebeli Q, Metzler-Zebeli B U. 2012. Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle. Research in Veterinary Science, 93, 1099–1108.
Zhang H, Peng A L, Zhao F F, Yu L H, Wang M Z, Osorio J S, Wang H R. 2020. Thiamine ameliorates inflammation of the ruminal epithelium of Saanen goats suffering from subacute ruminal acidosis. Journal of Dairy Science, 103, 1931–1943.
Zhang K, Meng M J, Gao L P, Tu Y L, Bai Y F. 2019. Rumen-derived lipopolysaccharide induced ruminal epithelium barrier damage in goats fed a high-concentrate diet. Microbial Pathogenesis, 131, 81–86.
Zhang R Y, Ye H M, Liu J H, Mao S Y. 2017. High-grain diets altered rumen fermentation and epithelial bacterial community and resulted in rumen epithelial injuries of goats. Applied Microbiology and Biotechnology, 101, 6981–6992. 
Zhang S, Albornoz R I, Aschenbach J R, Barreda D R, Penner G B. 2013. Short-term feed restriction impairs the absorptive function of the reticulo-rumen and total tract barrier function in beer cattle. Journal of Animal Science, 91, 1685–1695.
[1] LIU Da-cheng, ZHOU Xiang-li, ZHAO Pei-ting, GAO Min, HAN Hao-qi, , HUHong-lian . Effects of Increasing Non-Fiber Carbohydrate to Neutral Detergent Fiber Ratio on Rumen Fermentation and Microbiota in Goats[J]. >Journal of Integrative Agriculture, 2013, 12(2): 319-326.
No Suggested Reading articles found!