Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (2): 712-723    DOI: 10.1016/j.jia.2024.06.003
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Velogenic Newcastle disease virus invades chicken brain by infecting brain microvascular endothelial cells to increase blood-brain barrier permeability

Jie Zhao1, 2, 3*, Sa Xiao2*, Wei Yao2, Xudong Chang2, Xinglong Wang2, Zengqi Yang2, Wenbin Wang1, 2#

1 Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China

2 College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China

3 People’s Government of Guangpu Town, Chongqing 402765, China

 Highlights 
VNDV but not lentogenic NDV invades the chicken brain by infecting and damaging the tight junction of chBMECs directly to increase BBB permeability.
VNDV can infect chBMECs via endocytosis.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

新城疫病毒(NDV的嗜神经型强毒株(VNDV)引起的神经系统病变会出现非化脓性脑炎而导致显著的中枢神经紊乱,如扭颈、头颈震颤、转圈、腿或翅膀麻痹和瘫痪等症状,其雏鸡死亡率可达90%以上。生产上多见的神经型新城疫往往是鸡群发病后的后遗症,出现神经症状的家禽很难康复,未死亡的家禽长期处于疾病状态,严重影响家禽健康,并造成严重的经济损失。而VNNDV如何入侵鸡中枢神经系统的机制认不清楚。血脑屏障(BBB)可以阻止毒素和感染进入大脑。

本研究使用NDV强毒株F48E9和弱毒株LaSota分别以脑内注射和点眼滴鼻方式进行动物攻毒试验,及以鸡原代脑微血管内皮细胞(chBMECs)为细胞模型建立体外血脑屏障模型,通过病毒感染试验、细胞免疫荧光试验、荧光素钠示踪试验透射电镜观察等评价病毒对BBB的影响。最后,通过对chBMECs使用动力蛋白抑制剂dynasore来抑制细胞的胞吞过程,研究VNDV进入该细胞的途径。

通过体内和体外实验,我们发现VNDV通过破坏血管细胞之间的紧密连接蛋白ZO-1的连续性来增加血脑屏障的通透性。根据细胞形态学与内皮细胞标记物CD31的免疫荧光染色,成功分离chBMECs细胞,通过荧光素钠渗透性检测,在transwell中成功建立体外鸡BBB模型。将强毒株F48E9和弱毒株LaSota分别感染体外BBB模型,上下层病毒滴度荧光素钠含量的检测结果发现,只有强毒株F48E9在下层能够检测到病毒及荧光素钠,表明NDV强毒株能够增加鸡脑BBB的渗透性穿过BBB。进一步通过细胞免疫荧光染色,发现F48E9破坏chBMECs的紧密连接蛋白ZO-1之间的连接。而弱毒株LaSotaBBB没有任何影响。此外,在感染早期,使用dynamin抑制剂可降低病毒复制和血脑屏障通透性。我们的数据表明,VNDV通过感染和破坏chBMECs的紧密连接直接侵入鸡脑,从而增加血脑屏障的通透性。VNDV可通过内吞作用感染chbmec。因此,我们的研究结果为VNDV通过血脑屏障进入大脑提供了证据,为开发预防和治疗NDV的药物奠定基础。



Abstract  
The blood-brain barrier (BBB) keeps poisons and infections out of the brain.  Some viruses can pass through this barrier and replicate in the central nervous system (CNS).  Velogenic Newcastle disease virus (VNDV) is a neurotropic virus that causes avian nonsuppurative encephalitis.  VNDV often develops into a chronic infection that seriously affects poultry health in partially immune birds.  The routes by which the virus enters the chicken brain are poorly understood.  In this study, we discovered that VNDV increased BBB permeability in vivo and in vitro by breaking the tight junction protein zona occludens-1 (ZO-1) continuity of chicken brain microvascular endothelial cells (chBMECs).  By investigating the susceptibility of chBMECs to NDV infection, we found that VNDV but not lentogenic NDV was detected in the basolateral compartment in transwell assays after apical infection, suggesting that efficient replication and transcellular transport of the virus across the BBB in vitro.  Furthermore, viral replication and BBB permeability were reduced during the early stage of infection by using the dynamin inhibitor dynasore.  Our data demonstrate that VNDV invades the chicken brain by infecting and damaging the tight junction of chBMECs directly to increase BBB permeability.  VNDV could infect chBMECs via endocytosis.  As a result, our findings provide compelling evidence for VNDV entrance into the brain via the BBB, paving the way for the development of medications for NDV prevention and therapy.
Keywords:  velogenic Newcastle disease virus       blood-brain barrier        permeability        chicken brain microvascular endothelial cells  
Received: 19 April 2024   Accepted: 24 September 2024
Fund: 
This work was supported by the National Natural Science Foundation of China (32302864 and 31572533), the Shandong Provincial Natural Science Foundation, China (ZR2021QC185) and the Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences, China (CXGC2023F11).
About author:  #Correspondence Wenbin Wang, E-mail: wangwenbin1230@163.com * These authors contributed equally to this study.

Cite this article: 

Jie Zhao, Sa Xiao, Wei Yao, Xudong Chang, Xinglong Wang, Zengqi Yang, Wenbin Wang. 2025. Velogenic Newcastle disease virus invades chicken brain by infecting brain microvascular endothelial cells to increase blood-brain barrier permeability. Journal of Integrative Agriculture, 24(2): 712-723.

Abbott N J, Patabendige A A, Dolman D E, Yusof S R, Begley D J. 2010. Structure and function of the blood-brain barrier. Neurobiology of Disease37, 13–25.

Afonso P V, Ozden S, Cumont M C, Seilhean D, Cartier L, Rezaie P, Mason S, Lambert S, Huerre M, Gessain A, Couraud P O, Pique C, Ceccaldi P E, Romero I A. 2008. Alteration of blood-brain barrier integrity by retroviral infection. PLoS Pathogen4, e1000205.

Aldous E W, Alexander D J. 2008. Newcastle disease in pheasants (Phasianus colchicus): A review. The Veterinary Journal175, 181–185.

Alluri H, Wilson R L, Anasooya Shaji C, Wiggins-Dohlvik K, Patel S, Liu Y, Liu Y, Peng X, Beeram M R, Davis M L, Huang J H, Tharakan B. 2016. Melatonin preserves blood-brain barrier integrity and permeability via matrix metalloproteinase-9 inhibition. PLoS ONE11, e0154427.

Candelario-Jalil E, Yang Y, Rosenberg G A. 2009. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience158, 983–994.

Cattoli G, Susta L, Terregino C, Brown C. 2011. Newcastle disease: A review of field recognition and current methods of laboratory detection. Journal of Veterinary Diagnostic Investigation23, 637–656.

Chaves A J, Busquets N, Valle R, Rivas R, Vergara-Alert J, Dolz R, Ramis A, Darji A, Majó N. 2011. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1) in experimentally infected chickens. Veterinary Research42, 106.

Cho K O, Endoh D, Qian J F, Ochiai K, Onuma M, Itakura C. 1998. Central nervous system lesions induced experimentally by a very virulent strain of Marek’s disease virus in Marek’s disease-resistant chickens. Avian Pathology7, 512–517.

De Chiara G, Marcocci M E, Sgarbanti R, Civitelli L, Ripoli C, Piacentini R, Garaci E, Grassi C, Palamara A T. 2012. Infectious agents and neurodegeneration. Molecular Neurobiology46, 614–638.

Dortmans J C, Koch G, Rottier P J, Peeters B P. 2011. Virulence of Newcastle disease virus: What is known so far? Veterinary Research42, 122.

Engelhardt B, Vajkoczy P, Weller R O. 2017. The movers and shapers in immune privilege of the CNS. Nature Immunology18, 123–131.

Fletcher N F, Meeker R B, Hudson L C, Callanan J J. 2011. The neuropathogenesis of feline immunodeficiency virus infection: Barriers to overcome. Veterinary Journal (London, England: 1997), 188, 260–269.

Gralinski L E, Ashley S L, Dixon S D, Spindler K R. 2009. Mouse adenovirus type 1-induced breakdown of the blood-brain barrier. Journal of Virology83, 9398–9410.

Guo Y, Zhao J, Chang X, Yao W, Wang H, Wang W, Wang X, Zhang S, Yang Z, Xiao S. 2018. alpha2,3- and alpha2,6-linked sialic acids are important for cell binding and replication of Newcastle disease virus in chicken primary neuronal cells. Acta Virologica62, 235–245.

Ivey N S, MacLean A G, Lackner A A. 2009. Acquired immunodeficiency syndrome and the blood-brain barrier. Journal of Neurovirology15, 111–122.

Kramer-Hammerle S, Rothenaigner I, Wolff H, Bell J E, Brack-Werner R. 2005. Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Research111, 194–213.

Li F, Wang Y, Yu L, Cao S, Wang K, Yuan J, Wang C, Wang K, Cui M, Fu Z F. 2015. Viral Infection of the central nervous system and neuroinflammation precede blood-brain barrier disruption during Japanese encephalitis virus infection. Journal of Virology89, 5602–5614.

Liu Q, Yang Z, Hao H, Cheng S, Fan W, Du E, Xiao S, Wang X, Zhang S. 2014. Development of a SYBR Green real-time RT-PCR assay for the detection of avian encephalomyelitis virus. Journal of Virological Methods206, 46–50.

Mendonca M C, Soares E S, de Jesus M B, Ceragioli H J, Ferreira M S, Catharino R R, da Cruz-Höfling M A. 2015. Reduced graphene oxide induces transient blood-brain barrier opening: An in vivo study. Journal of Nanobiotechnology13, 78.

Meng C, Qiu X, Yu S, Li C, Sun Y, Chen Z, Liu K, Zhang X, Tan L, Song C, Liu G, Ding C. 2016. Evolution of newcastle disease virus quasispecies diversity and enhanced virulence after passage through chicken air sacs. Journal of Virology90, 2052–2063.

Mercer J, Schelhaas M, Helenius A. 2010. Virus entry by endocytosis, Annual Review of Biochemistry79, 803–833.

Miner J J, Diamond M S. 2016. Mechanisms of restriction of viral neuroinvasion at the blood-brain barrier. Current Opinioniimmunology38, 18–23.

Moura V M, Susta L, Cardenas-Garcia S, Stanton J B, Miller P J, Afonso C L, Brown C C. 2016. Neuropathogenic capacity of lentogenic, mesogenic, and velogenic newcastle disease virus strains in day-old chickens. Veterinary Pathology53, 53–64.

Niego B, Medcalf R L. 2013. Improved method for the preparation of a human cell-based, contact model of the blood-brain barrier. Journal of Visualized Experiments81, e50934.

Preta G, Cronin J G, Sheldon I M. 2015. Dynasore-not just a dynamin inhibitor. Cell Communication and Signaling13, 24.

Ruck T, Bittner S, Epping L, Herrmann A M, Meuth S G. 2014. Isolation of primary murine brain microvascular endothelial cells. Journal of Visualized Experiments93, e52204.

Salinas S, Schiavo G, Kremer E J. 2010. A hitchhiker’s guide to the nervous system: The complex journey of viruses and toxins. Nature Reviews Microbiology8, 645–655.

Sanchez-Felipe L, Villar E, Munoz-Barroso I. 2014. Entry of Newcastle Disease Virus into the host cell: Role of acidic pH and endocytosis. Biochimica et Biophysica Acta1838, 300–309.

Spindler K R, Hsu T H. 2012. Viral disruption of the blood-brain barrier. Trends Microbiology20, 282–290.

Strazza M, Pirrone V, Wigdahl B, Nonnemacher M R. 2011. Breaking down the barrier: The effects of HIV-1 on the blood-brain barrier. Brain Research1399, 96–115.

Tan L, Zhang Y, Zhan Y, Yuan Y, Sun Y, Qiu X, Meng C, Song C, Liao Y, Ding C. 2016. Newcastle disease virus employs macropinocytosis and Rab5a-dependent intracellular trafficking to infect DF-1 cells. Oncotarget7, 86117–86133.

Vandenhaute E, Drolez A, Sevin E, Gosselet F, Mysiorek C, Dehouck M P. 2016. Adapting coculture in vitro models of the blood-brain barrier for use in cancer research: Maintaining an appropriate endothelial monolayer for the assessment of transendothelial migration. Laboratory Investigation96, 588–598.

Verma S, Lo Y, Chapagain M, Lum S, Kumar M, Gurjav U, Luo H, Nakatsuka A, Nerurkar V R. 2009. West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the in vitro blood-brain barrier. Virology385, 425–433.

Wang W, Chang X, Yao W, Wei N, Huo N, Wang Y, Wei Q, Liu H, Wang X, Zhang S, Yang Z, Xiao S. 2019. Host CARD11 inhibits newcastle disease virus replication by suppressing viral polymerase activity in neurons. Journal of Virology93, e01499–19.

Wang W, Wei Q, Hao Q, Zhang Y, Li Y, Bi Y, Jin Z, Liu H, Liu X, Yang Z, Xiao S. 2021. Cellular CARD11 inhibits the fusogenic activity of newcastle disease virus via CBM signalosome-mediated furin reduction in chicken fibroblasts. Frontiers in Microbiology12, 607451.

Wang W, Zhang Y, Xiao S, Liu X, Yan P, Fu C, Yang Z. 2023. The brain-specific upregulation of CARD11 in response to avian brain-neurotropic virus infection serves as a potential biomarker. Poultry Science102, 102539.

Wang Y, Yu W, Huo N, Wang W, Guo Y, Wei Q, Wang X, Zhang S, Yang Z, Xiao S. 2017. Comprehensive analysis of amino acid sequence diversity at the F protein cleavage site of Newcastle disease virus in fusogenic activity. PLoS ONE12, e0183923.

Wu Z, Hofman F M, Zlokovic B V. 2023. A simple method for isolation and characterization of mouse brain microvascular endothelial cells. Journal of Neuroscience Methods130, 53–63.

[1] HU Hong-lian, YANG Shu-qing, CHENG Meng, SONG Li-wen, XU Ming, GAO Min, YU Zhong-tang. Long-term effect of subacute ruminal acidosis on the morphology and function of rumen epithelial barrier in lactating goats[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3302-3313.
No Suggested Reading articles found!