Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (5): 1568-1579    DOI: 10.1016/j.jia.2024.03.066
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |

EjGASA6 promotes flowering and root elongation by enhancing gibberellin biosynthesis

Qian Chen1, 2*, Shunyuan Yong1, 2*, Fan Xu3, Hao Fu1, 2, Jiangbo Dang1, 2, Qiao He1, 2, Danlong Jing1, 2, Di Wu1, 2, Guolu Liang1, 2, Qigao Guo1, 2#

1 Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China

2 State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing 400715, China

3 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Gibberellic Acid-Stimulated ArabidopsisGASA)基因家族广泛参与了基因表达调控和植物生长发育及胁迫反应。为了研究枇杷GASA基因在植物生长发育调控中的功能,我们克隆了一个与拟南芥AtGASA6同源的枇杷EjGASA6基因。通过对受赤霉素诱导的EjGASA6基因进行异源表达,发现转基因植株开花时间提前,主根变长,这些表型特征与赤霉素含量增加有关。转录组和qRT-PCR分析结果显示,编码赤霉素生物合成关键酶的GA3ox1GA20ox1基因的表达量显著升高。此外,通过双荧光素酶实验我们证实了EjGASA6可以增强GA20ox1的启动子活性。综上,我们的研究结果表明,EjGASA6通过正调控赤霉素的生物合成来提前开花时间和促进主根伸长。该研究结果拓宽了对GASAs在植物发育和生长中的作用的认识,为进一步研究EjGASA6在枇杷生长和发育中的调节功能奠定了基础。

Abstract  

The Gibberellic Acid-stimulated Arabidopsis (GASA) gene family is involved in the regulation of gene expression and plant growth, development, and stress responses.  To investigate the function of loquat GASA genes in the growth and developmental regulation of plants, a loquat EjGASA6 gene homologous to Arabidopsis AtGASA6 was cloned.  EjGASA6 expression was induced by gibberellin, and ectopic transgenic plants containing this gene exhibited earlier bloom and longer primary roots since these phenotypic characteristics are related to higher gibberellin content.  Transcriptome analysis and qRT-PCR results showed that the expression levels of GA3ox1 and GA20ox1, which encode key enzymes in gibberellin biosynthesis, were significantly increased.  Furthermore, we confirmed that EjGASA6 could promote the expression of GA20ox1 via the luciferase reporter system.  Overall, our results suggest that EjGASA6 promotes blooming and main-root elongation by positively regulating gibberellin biosynthesis.  These findings broaden our understanding of the role of GASAs in plant development and growth, and lay the groundwork for future research into the functions of EjGASA6 in regulating loquat growth and development.

Keywords:  loquat        EjGASA6        gibberellin synthesis        biological function   
Online: 30 March 2023   Accepted: 02 November 2023
Fund: This work was financially supported by the National Key R&D Program of China (2023YFD1600800), the National Nature Science Foundation of China (32102321), the Chongqing Science and Technology Commission, China (cstc2024ycjh-bgzxm0202, cstc2021jscx-gksbX0010 and cstc2021jcyj-msxmX1156), the Chongqing Forestry Administration, China (YuLinKeYan2022-14), the Innovation Research Group Funds for Chongqing Universities, China (CXQT19005), the Characteristic Fruit Industry and Technology System Innovation Team of Chongqing Agriculture and Rural Affairs Commission, China [(2022)164 and 2020(3)01], and the Chongqing Postgraduate Research and Innovation Programme, China (CYB23128).
About author:  Qian Chen, E-mail: chenqiansuaige@163.com; Shunyuan Yong, E-mail: Yongshunyuan2022@163.com; #Correspondence Qigao Guo, E-mail: qgguo@126.com * These authors contributed equally to this study.

Cite this article: 

Qian Chen, Shunyuan Yong, Fan Xu, Hao Fu, Jiangbo Dang, Qiao He, Danlong Jing, Di Wu, Guolu Liang, Qigao Guo. 2024.

EjGASA6 promotes flowering and root elongation by enhancing gibberellin biosynthesis . Journal of Integrative Agriculture, 23(5): 1568-1579.

Aubert D, Chevillard M, Dorne A M, Arlaud G, Herzog M. 1998. Expression patterns of GASA genes in Arabidopsis thaliana: The GASA4 gene is up-regulated by gibberellins in meristematic regions. Plant Molecular Biology, 36, 871–883.

Ben-Nissan G, Lee J Y, Borohov A, Weiss D. 2004. GIP, a Petunia hybrida GA-induced cysteine-rich protein: A possible role in shoot elongation and transition to flowering. Plant Journal, 37, 229–238.

Ceserani T, Trofka A, Gandotra N, Nelson T. 2009. VH1/BRL2 receptor-like kinase interacts with vascular-specific adaptor proteins VIT and VIK to influence leaf venation. Plant Journal, 57, 1000–1014.

Clough S J, Bent A F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 16, 735–743.

Colebrook E H, Thomas S G, Phillips A L, Hedden P. 2014. The role of gibberellin signalling in plant responses to abiotic stress. Journal of Experimental Biology, 217, 67–75.

Dayan J, Schwarzkopf M, Avni A, Aloni R. 2010. Enhancing plant growth and fiber production by silencing GA 2-oxidase. Plant Biotechnology Journal, 8, 425–435.

de la Fuente J I, Amaya I, Castillejo C, Sanchez-Sevilla J F, Quesada M A, Botella M A, Valpuest V. 2006. The strawberry gene FaGAST affects plant growth through inhibition of cell elongation. Journal of Experimental Botany, 57, 2401–2411.

Guo Q G, Zhang L Y, He Q, Li X L, Liang G L. 2007. Application of the laser confocal scanning microscope to pollen of triploid loquat. Acta Horticulturae, 750, 183–186.

Guo Y L, Fitz J, Schneeberger K, Ossowski S, Cao J, Weigel D. 2011. Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiology, 157, 757–769.

Hedden P, Phillips A L. 2000. Gibberellin metabolism: New insights revealed by the genes. Trends in Plant Science, 5, 523–530.

Hellens R P, Allan A C, Friel E N, Bolitho K, Grafton K, Templeton M D, Karunairetnam S, Gleave A P, Laing W A. 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods, 1, 13.

Herzog M, Dorne A M, Grellet F. 1995. GASA, a gibberellin-regulated gene family from Arabidopsis thaliana related to the tomato GAST1 gene. Plant Molecular Biology, 27, 743–752.

Jefferson R A, Kavanagh T A, Bevan M W. 1987. Gus fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher-plants. EMBO Journal, 6, 3901–3907.

Jiang C, Fu X. 2007. GA action: Turning on de-DELLA repressing signaling. Current Opinion in Plant Biology, 10, 461–465.

Jiang S, An H, Xu F, Zhang X. 2020. Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica) genome. Gigascience, 9, 1–9.

Jing D, Liu X, He Q, Dang J, Hu R, Xia Y, Wu D, Wang S, Zhang Y, Xia Q, Zhang C, Yu Y, Guo Q, Liang G. 2023. Genome assembly of wild loquat (Eriobotrya japonica) and resequencing provide new insights into the genomic evolution and fruit domestication in loquat. Horticulture Research, 10, uhac265.

Kim Y J, Kim J Y, Yoon J S, Kim D Y, Hong M J, Seo Y W. 2016. Characterization of 4 TaGAST genes during spike development and seed germination and their response to exogenous phytohormones in common wheat. Molecular Biology Reports, 43, 1435–1449.

Ko C B, Woo Y M, Lee D J, Lee M C, Kim C S. 2007. Enhanced tolerance to heat stress in transgenic plants expressing the GASA4 gene. Plant Physiology and Biochemistry, 45, 722–728.

Kotilainen M, Helariutta Y, Mehto M, Pollanen E, Albert V A, Elomaa P, Teeri T H. 1999. GEG participates in the regulation of cell and organ shape during corolla and carpel development in Gerbera hybrida. Plant Cell, 11, 1093–1104.

Kotoda N, Matsuo S, Honda I, Yano K, Shimizu T. 2017. Gibberellin 2-oxidase genes from Satsuma mandarin (Citrus unshiu Marc.) caused late flowering and dwarfism in transgenic Arabidopsis. Horticulture Journal, 86, 183–193.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.

Li K L, Bai X, Li Y, Cai H, Ji W, Tang L L, Wen Y D, Zhu Y M. 2011. GsGASA1 mediated root growth inhibition in response to chronic cold stress is marked by the accumulation of DELLAs. Journal of Plant Physiology, 168, 2153–2160.

Li Q F, Wang C M, Jiang L, Li S, Sun S S M, He J X. 2012. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Science Signaling, 5, ra72.

Li X, Zhang M S, Zhao L Q, Ling-Hu Q Q, Xu G. 2023. The study on interacting factors and functions of GASA6 in Jatropha curcas L. BMC Plant Biology, 23, 99.

Liang L G, Wang X W, Xiang Q S, Guo G Q, Li L X, He Q. 2011. Morphological comparing between diploid and triploid loquat. Acta Horticulturae, 887, 261–264.

Liu J, Zhai R, Liu F, Zhao Y, Wang H, Liu L, Yang C, Wang Z, Ma F, Xu L. 2018. Melatonin induces parthenocarpy by regulating genes in gibberellin pathways of ‘Starkrimson’ pear (Pyrus communis L.). Frontiers in Plant Science, 9, 946.

Liu Z H, Zhu L, Shi H Y, Chen Y, Zhang J M, Zheng Y, Li X B. 2013. Cotton GASL genes encoding putative gibberellin-regulated proteins are involved in response to GA signaling in fiber development. Molecular Biology Reports, 40, 4561–4570.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods, 25, 402–408.

Mao Z C, Zheng J Y, Wang Y S, Chen G H, Yang Y H, Feng D X, Xie B Y. 2011. The new CaSn gene belonging to the snakin family induces resistance against root-knot nematode infection in pepper. Phytoparasitica, 39, 151–164.

Mo X, Qian J, Liu P, Zeng H, Chen G, Wang Y. 2022. Exogenous betaine enhances the protrusion vigor of rice seeds under heat stress by regulating plant hormone signal transduction and its interaction network. Antioxidants (Basel), 11, 1792.

Ogawa M, Kusano T, Koizumi N, Katsumi M, Sano H. 1999. Gibberellin-responsive genes: High level of transcript accumulation in leaf sheath meristematic tissue from Zea mays L. Plant Molecular Biology, 40, 645–657.

Olszewski N, Sun T P, Gubler F. 2002. Gibberellin signaling: Biosynthesis, catabolism, and response pathways. Plant Cell, 14 (Suppl), S61-S80.

Pharis R P, Webber J E, Ross S D. 1987. The promotion of flowering in forest trees by gibberellin-A4/7 and cultural treatments - A review of the possible mechanisms. Forest Ecology and Management, 19, 65–84.

Qu J, Kang S G, Hah C, Jang J C. 2016. Molecular and cellular characterization of GA-Stimulated Transcripts GASA4 and GASA6 in Arabidopsis thaliana. Plant Science, 246, 1–10.

Reinecke D M, Wickramarathna A D, Ozga J A, Kurepin L V, Jin A L, Good A G, Pharis R P. 2013. Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea. Plant Physiology, 163, 929–945.

Roxrud I, Lid S E, Fletcher J C, Schmidt E D, Opsahl-Sorteberg H G. 2007. GASA4, one of the 14-member Arabidopsis GASA family of small polypeptides, regulates flowering and seed development. Plant and Cell Physiology, 48, 471–483.

Segura A, Moreno M, Madueno F, Molina A, Garcia-Olmedo F. 1999. Snakin-1, a peptide from potato that is active against plant pathogens. Molecular Plant–Microbe Interactions, 12, 16–23.

Shi L, Gast R T, Gopalraj M, Olszewski N E. 1992. Characterization of a shoot-specific, GA3- and ABA-regulated gene from tomato. Plant Journal, 2, 153–159.

Silverstein K A T, Moskal W A, Wu H C, Underwood B A, Graham M A, Town C D, VandenBosch K A. 2007. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant Journal, 51, 262–280.

Sparkes I A, Runions J, Kearns A, Hawes C. 2006a. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols, 1, 2019–2025.

Sparkes I A, Runions J, Kearns A, Hawes C. 2006b. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols, 1, 2019–2025.

Su W, Jing Y, Lin S, Yue Z, Yang X, Xu J, Wu J, Zhang Z, Xia R, Zhu J, An N, Chen H, Hong Y, Yuan Y, Long T, Zhang L, Jiang Y, Liu Z, Zhang H, Gao Y, et al. 2021. Polyploidy underlies co-option and diversification of biosynthetic triterpene pathways in the apple tribe. Proceedings of the National Academy of Sciences of the United States of America, 118, e211767218.

Takagi T, Mukai H, Ikeda R, Suzuki T. 1994. Effect of application of gibberellic-acid and N-(2-chloropyridyl)-N´-phenylurea on the enlargement of frost-induced seedless fruit of loquat (Eriobotrya japonica Lindl). Journal of the Japanese Society for Horticultural Science, 62, 733–738.

Wang Y. 2021. A draft genome, resequencing, and metabolomes reveal the genetic background and molecular basis of the nutritional and medicinal properties of loquat (Eriobotrya japonica (Thunb.) Lindl). Horticulture Research, 8, 231.

Xu F, Wang L, Xu J, Chen Q, Ma C, Huang L, Li G, Luo M. 2023. GhIQD10 interacts with GhCaM7 to control cotton fiber elongation via calcium signaling. The Crop Journal, 11, 447–456.

Yamaguchi S. 2008. Gibberellin metabolism and its regulation. Annual Review of Plant Biology, 59, 225–251.

Zhang S, Wang X. 2017. One new kind of phytohormonal signaling integrator: Up-and-coming GASA family genes. Plant Signaling & Behavior, 12, e1226453.

Zhang S C, Wang X J. 2008. Expression pattern of GASA, downstream genes of DELLA, in Arabidopsis. Chinese Science Bulletin, 53, 3839–3846.

Zhang S C, Yang C W, Peng J Z, Sun S L, Wang X J. 2009. GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana. Plant Molecular Biology, 69, 745–759.

Zhong C M, Xu H, Ye S T, Wang S Y, Li L F, Zhang S C, Wang X J. 2015. Gibberellic Acid-stimulated Arabidopsis6 serves as an integrator of gibberellin, abscisic acid, and glucose signaling during seed germination in Arabidopsis. Plant Physiology, 169, 2288–2303.

[1] YIN Liang-fen, ZHANG Shu-qin, DU Juan, WANG Xin-yu, XU Wen-xing, LUO Chao-xi . Monilinia fructicola on loquat: An old pathogen invading a new host[J]. >Journal of Integrative Agriculture, 2021, 20(7): 2009-2014.
[2] CHI Zhuo-heng, WANG Yong-qing, DENG Qun-xian, ZHANG Hui, PAN Cui-ping, YANG Zhi-wu. Endogenous phytohormones and the expression of flowering genes synergistically induce flowering in loquat[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2247-2256.
[3] LI Jing, WANG Yong-qing, CHEN Dong, TU Mei-yan, XIE Hong-jiang, JIANG Guo-liang, LIU Jia, SUN Shu-xia. The variation of NAD+-SDH gene in mutant white-fleshed loquat[J]. >Journal of Integrative Agriculture, 2016, 15(8): 1744-1750.
No Suggested Reading articles found!