Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (5): 1580-1592    DOI: 10.1016/j.jia.2023.04.043
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Establishment of a system for screening and identification of novel bactericide targets in the plant pathogenic bacterium Xanthomonas oryzae pv. oryzae using Tn-seq and SPR

Chaoyue Pang1, 3, 4, 5*, Ling Jin1, 3, 4, 5*, Haoyu Zang2, Damalk Saint-Claire S. Koklannou1, 3, 4, 5, Jiazhi Sun1, 3, 4, 5, Jiawei Yang1, 3, 4, 5, Yongxing Wang6, Liang Xu6, Chunyan Gu2, Yang Sun1, 3, 4, 5, Xing Chen1, 3, 4, 5#, Yu Chen1, 3, 4, 5# 

1 School of Plant Protection, Anhui Agricultural University, Hefei 230036, China

2 Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China

3 Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China

4 Hefei Research Center, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hefei 230036, China

5 Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China

6 Shandong Vicome Greenland Chemical Co., Ltd., Jinan 250204, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

黄单胞菌是一类重要的植物病原细菌,可引起严重的植物病害,造成巨大的经济损失。化学防治是防治黄单胞菌属细菌侵染导致病害的最经济有效的措施,但又缺乏高效杀菌剂抑制此类病害的发生。因此,探究黄单胞菌基因组特征、鉴定新型药剂靶点是十分必要的。在本研究中,以引起水稻白叶枯病的病原菌稻黄单胞菌稻致病变种Xanthomonas oryzae pv. oryzaeXoo)为代表,成功构建了Xoo的转座子插入文库。转座子测序(Transposon sequencingTn-seq)数据显示,mariner C9转座子匹配插入的位点数占总潜在插入位点的35.7%-36.4%,同时鉴定到Xoo生长所必需的491个基因。与其他已报道细菌的必需基因相比,Xoo的一些必需基因功能未知,25个基因推测为黄单胞属类群的独有必需基因,且3个基因是黄单胞属细菌所特有的。综上,这些研究结果可为开发广谱型、黄单胞特异型、环境友好型的杀菌剂提供候选靶点。辛菌胺是一种对水稻黄单胞菌具有良好抑制效果的新型杀菌剂,本研究利用表面等离子体共振(Surface Plasmon ResonanceSPR)与高效液相色谱-质谱(High Performance Liquid Chromatography-Mass SpectrometryHPLC-MS)相结合的方法,鉴定得到了其在Xoo中的可能作用靶点,Tn-seq联合分析表明辛菌胺的作用靶点为Xoo的必需基因。这些靶点也可为后期开发抑制黄单胞属细菌的杀菌剂提供依据。本研究还结合实时荧光定量PCRQuantitative Real-time, qRT-PCR)的数据分析了一些杀菌剂的作用机制一直未被阐明的原因,Tn-seqSPRHPLC-MS三者结合来研究和验证杀菌剂的作用机制也是本研究中提出的一种新的方法。本研究构建的转座子插入文库也将为Xoo在寄主植物中的生存策略以及识别与Xoo适应度相关的未知基因等研究提供参考。总之,本研究促进了对黄单胞菌的认识,为防治水稻白叶枯病等由黄单胞菌引起的病害提供了新的视角,为今后对黄单胞菌的研究奠定了基础。



Abstract  

Xanthomonas spp. cause severe bacterial diseases.  However, effective strategies for prevention and management of these diseases are scarce.  Thus, it is necessary to improve the efficiency of control of diseases caused by Xanthomonas.  In this study, Xanthomonas oryzae pv. oryzae (Xoo), which causes rice bacterial leaf blight, has been studied as a representative.  A transposon insertion library of Xoo, comprising approximately 200,000 individual insertion mutants, was generated.  Transposon sequencing data indicated that the mariner C9 transposase mapped at 35.7–36.4% of all potential insertion sites, revealing 491 essential genes required for the growth of Xoo in rich media.  The results show that, compared to the functions of essential genes of other bacteria, the functions of some essential genes of Xoo are unknown, 25 genes might be dangerous for the Xanthomonas group, and 3 are specific to Xanthomonas.  High-priority candidates for developing broad-spectrum, Xanthomonas-specific, and environment-friendly bactericides were identified in this study.  In addition, this study revealed the possible targets of dioctyldiethylenetriamine using surface plasmon resonance (SPR) in combination with high performance liquid chromatography–mass spectrometry (HPLC–MS).  The study also provided references for the research of some certain bactericides with unknown anti-bacterial mode of action.  In conclusion, this study urged a better understanding of Xanthomonas, provided meaningful data for the management of bacterial leaf blight, and disclosed selected targets of a novel bactericide.

Keywords:  rice bacterial leaf blight        Xanthomonas        essential genes        Tn-seq        dioctyldiethylenetriamine    
Received: 06 March 2023   Accepted: 27 March 2023
Fund: The authors would like to thank Dehong Zheng, from Guangxi University (China) for providing the Escherichia coli BW29427 carrying the plasmid pMarC9-R6k.  This study was supported by the National Natural Science Foundation of China (32272587 and 32202342), the Programs for the Scientific Research Activities of Academic and Technical Leaders of Anhui Province, China (2020D251), the Development Fund for Talent Personnel of Anhui Agricultural University, China (rc342006), the University Synergy Innovation Program of Anhui Province, China (GXXT-2021-059), the Key Project of the Natural Science Foundation of Anhui Provincial Department of Education, China (2023AH040129), and Anhui Province Agricultural Eco-Environmental Protection and Quality Safety Industry Technology System, China.

About author:  Chaoyue Pang, E-mail: 954076937@qq.com; Ling Jin, E-mail: 1102246363@qq.com; #Correspondence Yu Chen, E-mail: chenyu66891@sina.com; Xing Chen, E-mail: chenxing2028@163.com * These authors contributed equally to this study.

Cite this article: 

Chaoyue Pang, Ling Jin, Haoyu Zang, Damalk Saint-Claire S. Koklannou, Jiazhi Sun, Jiawei Yang, Yongxing Wang, Liang Xu, Chunyan Gu, Yang Sun, Xing Chen, Yu Chen. 2024. Establishment of a system for screening and identification of novel bactericide targets in the plant pathogenic bacterium Xanthomonas oryzae pv. oryzae using Tn-seq and SPR. Journal of Integrative Agriculture, 23(5): 1580-1592.

Aromolaran O, Oyelade J, Adebiyi E. 2021. Performance evaluation of features for gene essentiality prediction. Earth and Environmental Science, 655, 012019.

Azhagesan K, Ravindran B, Raman K. 2018. Network-based features enable prediction of essential genes across diverse organisms. PLoS ONE, 13, e0208722.

Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Molecular Systems Biology, 2, 2006.0008.

Benson T E, Marquardt J L, Marquardt A C, Etzkorn F A, Walsh C T. 1993. Overexpression, purification, and mechanistic study of UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry, 32, 2024–2030.

Boinett C J, Cain A K, Hawkey J, Do Hoang N T, Khanh N N T, Thanh D P. 2019. Clinical and laboratory-induced colistin-resistance mechanisms in Acinetobacter baumannii. Microbial Genomics, 5, e000246.

Boulanger A, Boureau T, Carrere S, Cesbron S, Chen N W, Cociancich S. 2016. Using ecology, physiology, and genomics to understand host specificity in Xanthomonas. Annual Review of Phytopathology, 54, 163–187.

Brötz-Oesterhelt H, Beyer D, Kroll H P, Endermann R, Ladel C, Schroeder W. 2005. Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nature Medicine, 11, 1082–1087.

Cain A K, Barquist L, Goodman A L, Paulsen I T, Parkhill J, van Opijnen T. 2020. A decade of advances in transposon-insertion sequencing. Nature Reviews Genetics, 21, 526–540.

Choudhery S, Brown A J, Akusobi C, Rubin E J, Sassetti C M, Ioerger T R. 2021. Modeling site-specific nucleotide biases affecting himar1 transposon insertion frequencies in TnSeq data sets. Msystems, 6, e00876.

Christen B, Abeliuk E, Collier J M, Kalogeraki V S, Passarelli B, Coller J A. 2011. The essential genome of a bacterium. Molecular Systems Biology, 7, 528.

Coe K A, Lee W, Stone M C, Komazin-Meredith G, Meredith T C, Grad Y H. 2019. Multi-strain Tn-Seq reveals common daptomycin resistance determinants in Staphylococcus aureus. PLoS Pathogens, 15, e1007862.

Cooksey D A. 1990. Genetics of bactericide resistance in plant pathogenic bacteria. Annual Review of Phytopathology, 28, 201–219.

DeJesus M A, Ambadipudi C, Baker R, Sassetti C, Ioerger T R. 2015. TRANSIT-a software tool for Himar1 TnSeq analysis. Plos Computational Biology, 11, e1004401.

DeJesus M A, Zhang Y J, Sassetti C M, Rubin E J, Sacchettini J C, Ioerger T R. 2013. Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries. Bioinformatics, 29, 695–703.

Deutschbauer A, Price M N, Wetmore K M, Tarjan D R, Xu Z, Shao W. 2014. Towards an informative mutant phenotype for every bacterial gene. Journal of Bacteriology, 196, 3643–3655.

Fabian B K, Tetu S G, Paulsen I T. 2020. Application of transposon insertion sequencing to agricultural science. Frontiers in Plant Science, 11, 291.

Fields P I, Swanson R V, Haidaris C G, Heffron F. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proceedings of the National Academy of Sciences of the United States of America, 83, 5189–5193.

Freed N E. 2017. Creation of a dense transposon insertion library using bacterial conjugation in enterobacterial strains such as Escherichia coli or Shigella flexneri. Journal of Visualized Experiments, 127, e56216.

Gawronski J D, Wong S M, Giannoukos G, Ward D V, Akerley B J. 2009. Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proceedings of the National Academy of Sciences of the United States of America, 106, 16422–16427.

Gil R, Silva FJ, Peretó J, Moya A. 2004.Determination of the core of a minimal bacterial gene set. Microbiology and Molecular Biology Reviews, 68, 518–537.

Gong J, Yang G, Yu W, Huang M, Li F, Jin M. 2018. The development and validation of a liquid chromatography–tandem mass spectrometry procedure for the determination of dioctyldiethylenetriamine acetate residues in soil, green and cured tobacco leaves using a modified QuEChERS Approach. Chromatographia, 81, 1035–1041.

Goodman A L, McNulty N P, Zhao Y, Leip D, Mitra R D, Lozupone C A. 2009. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host & Microbe, 6, 279–289.

Hancock S J, Phan M D, Peters K M, Forde B M, Chong T M, Yin W F. 2017. Identification of IncA/C plasmid replication and maintenance genes and development of a plasmid multilocus sequence typing scheme. Antimicrobial Agents and Chemotherapy, 61, e01740-16.

Hensel M, Shea J E, Gleeson C, Jones M D, Dalton E, Holden D W. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science, 269, 400–403.

Jana B, Cain A K, Doerrler W T, Boinett C J, Fookes M C, Parkhill J. 2017. The secondary resistome of multidrug-resistant Klebsiella pneumoniae. Scientific Reports, 7, 1–10.

Juhas M, Eberl L, Glass J I. 2011. Essence of life: Essential genes of minimal genomes. Trends in Cell Biology, 21, 562–568.

Kobayashi K, Ehrlich S D, Albertini A, Amati G, Andersen K, Arnaud M. 2003. Essential Bacillus subtilis genes. Proceedings of the National Academy of Sciences of the United States of America, 100, 4678–4683.

Lamichhane J R, Osdaghi E, Behlau F, Köhl J, Jones J B, Aubertot J N. 2018. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agronomy for Sustainable Development, 38, 1–18.

Langridge G C, Phan M D, Turner D J, Perkins T T, Parts L, Haase J. 2009. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Research, 19, 2308–2316.

Lee B G, Park E Y, Lee K E, Jeon H, Sung K H, Paulsen H. 2010. Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nature Structural & Molecular Biology, 17, 471–478.

Lee H H, Ostrov N, Wong B G, Gold M A, Khalil A S, Church G M. 2019. Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi. Nature Microbiology, 4, 1105–1113.

Lein W, Bornke F, Reindl A, Ehrhardt T, Stitt M, Sonnewald U. 2004. Target-based discovery of novel herbicides. Current Opinion in Plant Biology, 7, 219–225.

Levitan A, Gale A N, Dallon E K, Kozan D W, Cunningham K W, Sharan R. 2020. Comparing the utility of in vivo transposon mutagenesis approaches in yeast species to infer gene essentiality. Current Genetics, 66, 1117–1134.

Li S, Li X, Zhang H, Wang Z, Xu H. 2021. The research progress in and perspective of potential fungicides: Succinate dehydrogenase inhibitors. Bioorganic & Medicinal Chemistry, 50, 116476.

Li Y, Mi X, Zhao S, Zhu J, Guo R, Xia X. 2020. Comprehensive profiling of alternative splicing landscape during cold acclimation in tea plant. BMC Genomics, 21, 1–16.

Lim H C, Sher J W, Rodriguez-Rivera F P, Fumeaux C, Bertozzi C R, Bernhardt T G. 2019. Identification of new components of the RipC-FtsEX cell separation pathway of Corynebacterineae. PLoS Genetics, 15, e1008284.

Liu S, Mi X, Zhang R, An Y, Zhou Q, Yang T. 2019. Integrated analysis of miRNAs and their targets reveals that miR319c/TCP2 regulates apical bud burst in tea plant (Camellia sinensis). Planta, 250, 1111–1129.

Liu W, Liu J, Triplett L, Leach J E, Wang G L. 2014. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annual Review of Phytopathology, 52, 213–241.

Liu Y, Gao Y, Liu X, Liu Q, Zhang Y, Wang Q. 2017. Transposon insertion sequencing reveals T4SS as the major genetic trait for conjugation transfer of multi-drug resistance pEIB202 from Edwardsiella. BMC Microbiology, 17, 1–15.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.

Loman N J, Constantinidou C, Chan J Z, Halachev M, Sergeant M, Penn C W. 2012. High-throughput bacterial genome sequencing: An embarrassment of choice, a world of opportunity. Nature Reviews Microbiology, 10, 599–606.

Luo H, Lin Y, Gao F, Zhang C T, Zhang R. 2014. DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Research, 42, D574–D580.

Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13, 614–629.

Morinière L, Lecomte S, Gueguen E, Bertolla F. 2021. In vitro exploration of the Xanthomonas hortorum pv. vitians genome using transposon insertion sequencing and comparative genomics to discriminate between core and contextual essential genes. Microbial Genomics, 7, 000546.

Müller C, Strengert M, Ertl T. 2007. Adaptive load balancing for raycasting of non-uniformly bricked volumes. Parallel Computing, 33, 406–419.

Mushegian A R, Koonin E V. 1996. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proceedings of the National Academy of Sciences of the United States of America, 93, 10268–10273.

Nandi S, Subramanian A, Sarkar R R. 2017. An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features. Molecular BioSystems, 13, 1584–1596.

Van Opijnen T, Bodi K L, Camilli A. 2009. Tn-seq: High-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nature Methods, 6, 767–772.

Van Opijnen T, Camilli A. 2013. Transposon insertion sequencing: A new tool for systems-level analysis of microorganisms. Nature Reviews Microbiology, 11, 435–442.

Pennisi E. 2010. Armed and dangerous. Science, 327, 804–805.

Poulin L, Raveloson H, Sester M, Raboin L, Silué D, Koebnik R, Szurek B. 2014. Confirmation of bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola on rice in Madagascar. Plant Disease, 98, 1423.

Poulsen B E, Yang R, Clatworthy A E, White T, Osmulski S J, Li L. 2019. Defining the core essential genome of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 116, 10072–10080.

Price M N, Zane G M, Kuehl J V, Melnyk R A, Wall J D, Deutschbauer A M. 2018. Filling gaps in bacterial amino acid biosynthesis pathways with high-throughput genetics. PLoS Genetics, 14, e1007147.

Qian X H, Lee P W, Cao S. 2010. China: Forward to the green pesticides via a basic research program. Journal of Agricultural and Food Chemistry, 58, 2613–2623.

Qian Z H, Li T, Guan Y B. 2021. The preliminary study of sensitivity and resistance risk of Pythium aphanidermatum to Xinjunan. Modern Agrochemicals, 20, 61–65. (in Chinese)

Ryan R P, Vorhölter F J, Potnis N, Jones J B, Van Sluys M A, Bogdanove A J. 2011. Pathogenomics of Xanthomonas: Understanding bacterium–plant interactions. Nature Reviews Microbiology, 9, 344–355.

Sanner M F. 1999. Python: A programming language for software integration and development. Journal of Molecular Graphics & Modelling, 17, 57–61.

Shen W, Le S, Li Y, Hu F. 2016. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE, 11, e0163962.

Sundin G W, Castiblanco L F, Yuan X, Zeng Q, Yang C H. 2016. Bacterial disease management: Challenges, experience, innovation and future prospects: Challenges in bacterial molecular plant pathology. Molecular Plant Pathology, 17, 1506–1518.

Su Y, Xu Y, Li Q, Yuan G, Zheng D. 2020. The essential genome of Ralstonia solanacearum. Microbiological Research, 238, 126500.

Wang S, Lin Z, Su K, Zhang J, Zhang L, Gao Z. 2018. Effect of curcumin and pirfenidone on toxicokinetics of paraquat in rat by UPLC–MS/MS. Acta Chromatographica, 30, 26–30.

Wetmore K M, Price M N, Waters R J, Lamson J S, He J, Hoover C A. 2015. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons. MBio, 6, e00306–00315.

Wu Y, Jiang X, Zhang S, Dai X, Liu Y, Tan H. 2016. Quantification of flavonol glycosides in Camellia sinensis by MRM mode of UPLC-QQQ-MS/MS. Journal of Chromatography B, 1017, 10–17.

Xu S, Zhao X, Liu F, Cao Y, Wang B, Wang X. 2018. Crucial role of oxidative stress in bactericidal effect of parthenolide against Xanthomonas oryzae pv. oryzae. Pest Management Science, 74, 2716–2723.

Yasir M, Turner A K, Bastkowski S, Page A J, Telatin A, Phan M D. 2019. A new massively-parallel transposon mutagenesis approach comparing multiple datasets identifies novel mechanisms of action and resistance to triclosan. BioRxiv, doi.org/10.1101/596833.

Yu G, Wang L G, Han Y, He Q Y. 2012. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics: A Journal of Integrative Biology, 16, 284–287.

Zhou Q, Li L, Liu F, Hu J, Cao Y, Qiao S. 2022. Mining and characterization of oxidative stress-related binding proteins of parthenolide in Xanthomonas oryzae pv. oryzae. Pest Management Science, 78, 3345–3355.

No related articles found!
No Suggested Reading articles found!