Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (8): 2662-2673    DOI: 10.1016/j.jia.2024.03.016
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Ploidy and fruit trait variation in oil-tea Camellia: Implications for ploidy breeding
Yanmin Li1*, Liangjing Yin1*, Xianyu He1, Cenlong Hu2, Ronghua Wu2, Qian Long3, Shixin Xiao1#, Deyi Yuan1#
1 Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education/Key Laboratory of Non-Wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha 410004, China
2 Qiandongnan Institute of Forestry, Qiandongnan Miao and Dong Autonomous Prefecture 556000, China
3 Dongfeng Forest Farm of Liping County, Qiandongnan Miao and Dong Autonomous Prefecture 557300, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
植物多倍化往往伴随着产量和品质的提高,因此,获得多倍体种质是育种的一项重要工作。山茶属中种子含油量高,具有食用价值的被统称为油茶,存在很多不同倍性的种类,但是在油茶中更高的倍性水平是否一定代表着更好的性状,其相关性还尚不清楚。在本研究中,研究了该科 3 个不同物种的 30 个不同油茶品系的倍性水平。通过流式细胞术和染色体制备对副茶花进行了测定,并通过现场观察和实验室分析检查了果实的表型特征和脂肪酸组成。研究了油茶倍性水平与果实主要性状的相关性。结果表明,10个狭叶油茶品系均为二倍体,10个小果油茶品系均为四倍体,10个普通油茶品系均为六倍体;六倍体油茶的果实横径、纵径、单果重、果皮厚度、单果籽数、单果籽重和出油率均显著高于二倍体和四倍体,但其果皮明显更厚,鲜出籽率明显更低,并且这些性状与倍性显著相关。此外,从脂肪酸组成来看,六倍体油茶的油酸含量高于四倍体和二倍体,但亚油酸、亚麻酸和花生四烯酸含量较低;棕榈酸、硬脂酸和总不饱和脂肪酸含量与倍性水平不存在显著相关性。综上所述,油茶果实的主要性状与倍性水平存在一定的相关性,倍性水平的提高导致果实产量的增加,且对油脂品质没有影响。不同倍性油茶果实主要性状变异的发现,将有利于多倍体种质创新,为倍性育种和果实性状的机理研究奠定基础。


Abstract  
Plant polyploidy often occurs in conjunction with higher yield and superior quality.  Therefore, obtaining polyploid germplasms is a significant part of breeding.  The oil-tea Camellia tree is an important native woody plant that produces high-quality edible oil and includes many species of Camellia with different ploidies.  However, whether higher ploidy levels in oil-tea Camellia trees are related to better traits remains unclear.  In this study, the ploidy levels of 30 different oil-tea Camellia strains in three different species in the Sect. Paracamellia were determined by flow cytometry and chromosome preparation, and the phenotypic characteristics and fatty acid compositions of the fruits were examined by field observations and laboratory analyses.  The correlations between the ploidy level of oil-tea Camellia and the main traits of the fruit were investigated.  Our results showed that 10 Camellia lanceoleosa strains were diploid, 10 Camellia meiocarpa strains were tetraploid and 10 Camellia oleifera strains were hexaploid.  Hexaploid Coleifera had larger fruit size and weight, more seeds per fruit, greater seed weight per fruit, higher oil content and greater yield per crown width than tetraploid Cmeiocarpa and diploid Clanceoleosa, but their fruit peel thickness and fresh seed rate were significantly lower, and these traits were significantly correlated with ploidy level.  In addition, in terms of fatty acid composition, hexaploid Coleifera had a higher oleic acid content than tetraploid Cmeiocarpa and diploid Clanceoleosa, but their linoleic acid, linolenic acid and arachidonic acid contents were lower.  The contents of palmitic acid, stearic acid and total unsaturated fatty acids were not significantly correlated with ploidy level.  In conclusion, certain correlations exist between the main characteristics of oil-tea Camellia fruit and the ploidy level, and increasing the ploidy level led to an increase in fruit yield with no effect on oil composition.  The discovery of variations in the main characteristics of oil-tea Camellia fruit with different ploidies will facilitate germplasm innovation and lay a foundation for ploidy breeding and mechanistic research on fruit traits.


Keywords:  oil-tea Camellia        ploidy level        fruit traits        correlation        polyploidization  
Received: 03 August 2023   Accepted: 25 January 2024
Fund: 
This work was supported by the Special Funds for Construction of Innovative Provinces in Hunan Province, China (2021NK1007), the Hunan Provincial Innovation Foundation for Postgraduate, China (CX20230779), and the Scientific Innovation Fund for Post-graduates of Central South University of Forestry and Technology, China (2023CX01009).

About author:  Yanmin Li, E-mail: lym1819qq@163.com; Liangjing Yin, 1430946869 @qq.com; #Correspondence Shixin Xiao, E-mail: xiaoshixin@csuft.edu.cn; Deyi Yuan, E-mail: yuan-deyi@163.com * These authors contributed equally to this study.

Cite this article: 

Yanmin Li, Liangjing Yin, Xianyu He, Cenlong Hu, Ronghua Wu, Qian Long, Shixin Xiao, Deyi Yuan. 2024. Ploidy and fruit trait variation in oil-tea Camellia: Implications for ploidy breeding. Journal of Integrative Agriculture, 23(8): 2662-2673.

Adams K L, Wendel J F. 2005. Polyploidy and genome evolution in plants. Current Opinion in Plant Biology8, 135–141.

Chaicharoenpong C, Petsom A. 2011. Chapter 132 - Use of tea (Camellia oleifera Abel.) seeds in human health. In: Preedy V R, Watson R R, Patel V B, eds., Nuts and Seeds in Health and Disease Prevention. Academic Press, San Diego. pp. 1115–1122.

Chang H , Ren S. 1998. Theaceae (1). In: Flora Reipublicae Popularis Sinicae. Science Press, Beijing. (in Chinese)

Cheng S, Zong Y, Wang X. 2019. Sub-genome polyploidization effects on metabolomic signatures in triploid hybrids of populus. Forests10, 1091.

Clausen J, Keck D, Hiesey W. 1940. Experimental Studies on the Nature of SpeciesIEffect of Varied Environments on Western North American Plants. Carnegie Institution of Washington Publication. No. 520, Washington, D.C.

Comai L. 2005. The advantages and disadvantages of being polyploid. Nature Reviews Genetics6, 836–846.

Dubcovsky J, Dvorak J. 2007. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science316, 1862–1866.

Fawcett J A, Maere S, Van de Peer Y. 2009. Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proceedings of the National Academy of Sciences of the United States of America106, 5737–5742.

Gong W, Song Q, Ji K, Gong S, Wang L, Chen L, Zhang J, Yuan D. 2020. Full-length transcriptome from Camellia oleifera seed provides insight into the transcript variants involved in oil biosynthesis. Journal of Agricultural and Food Chemistry68, 14670–14683.

Gong W, Xiao S, Wang L, Liao Z, Chang Y, Mo W, Hu G, Li W, Zhao G, Zhu H, Hu X, Ji K, Xiang X, Song Q, Yuan D, Jin S, Zhang L. 2022. Chromosome-level genome of Camellia lanceoleosa provides a valuable resource for understanding genome evolution and self-incompatibility. The Plant Journal110, 881–898.

Gustafsson Å. 1948. Polyploidy, life-form and vegetative reproduction. Hereditas34, 1–22.

Hembree W G, Ranney T G, Jackson B E, Weathington M. 2019. Cytogenetics, ploidy, and genome sizes of Camellia and related genera. HortScience54, 1124–1142.

Huang H, Tong Y, Zhang Q J, Gao L Z. 2013. Genome size variation among and within Camellia species by using flow cytometric analysis. PLoS ONE8, e64981.

Huang X, Chen J, Yang X, Duan S, Long C, Ge G, Rong J. 2018. Low genetic differentiation among altitudes in wild Camellia oleifera, a subtropical evergreen hexaploid plant. Tree Genetics & Genomes14, 1–12.

Jaskani M J, Kwon S W, Kim D H. 2005. Comparative study on vegetative, reproductive and qualitative traits of seven diploid and tetraploid watermelon lines. Euphytica145, 259–268.

Jiao Y, Wickett N J, Ayyampalayam S, Chanderbali A S, Landherr L, Ralph P E, Tomsho L P, Hu Y, Liang H, Soltis P S, Soltis D E, Clifton S W, Schlarbaum S E, Schuster S C, Ma H, Leebens-Mack J, dePamphilis C W. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature473, 97–100.

Kataoka I, Mizugami T, Kim J G, Beppu K, Fukuda T, Sugahara S, Tanaka K, Satoh H, Tozawa K. 2010. Ploidy variation of hardy kiwifruit (Actinidia arguta) resources and geographic distribution in Japan. Scientia Horticulturae124, 409–414.

Kolar F, Certner M, Suda J, Schonswetter P, Husband B C. 2017. Mixed-ploidy species: progress and opportunities in polyploid research. Trends in Plant Science22, 1041–1055.

Levin D A. 2002. The Role of Chromosomal Change in Plant Evolution. Oxford University Press, USA.

Li D, Liu Y, Zhong C, Huang H. 2010. Morphological and cytotype variation of wild kiwifruit (Actinidia chinensis complex) along an altitudinal and longitudinal gradient in central-west China. Botanical Journal of the Linnean Society164, 72–83.

Li L, Liu B. 2019. Recent advances of plant polyploidy and polyploid genome evolution. Scientia Sinica Vitae49, 327–337. (in Chinese)

Li Y, Ye T, Han C, Ye Z, Zhang J, Xiao S, Yuan D. 2021. Cytogenetic analysis of interspecific hybridization in oil-tea (Camellia oleifera). Euphytica217, 8.

Lin M, Wang S, Liu Y, Li J, Zhong H, Zou F, Yuan D. 2022. Hydrogen cyanamide enhances flowering time in tea oil camellia (Camellia oleifera Abel.). Industrial Crops and Products176, 114313.

Liu S Y, Chen S M, Chen Y, Guan Z Y, Yin D M, Chen F D. 2011. In vitro induced tetraploid of Dendranthema nankingense (Nakai) Tzvel. shows an improved level of abiotic stress tolerance. Scientia Horticulturae127, 411–419.

Liu Y. 2021. The mechanism of constructing mixed-ploidy populations in polyploid species. Biodiversity Science29, 1128–1133.

Löve A, Löve D. 1943. The significance of differences in the distribution of diploids and polyploids. Hereditas29, 145–163.

Löve A, Löve D. 1949. The geobotanical significance of polyploidy. I. Polyploidy and latitude. Portugaliae Acta Biologica Série A2, 273–352.

Ma X F, Gustafson J P. 2005. Genome evolution of allopolyploids: A process of cytological and genetic diploidization. Cytogenetic and Genome Research109, 236–249.

Madlung A, Wendel J F. 2013. Genetic and epigenetic aspects of polyploid evolution in plants. Cytogenetic and Genome Research140, 270–285.

Mason A S, Snowdon R J. 2016. Oilseed rape: Learning about ancient and recent polyploid evolution from a recent crop species. Plant Biology18, 883–892.

Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. 2015. The molecular biology of meiosis in plants. Annual Review of Plant Biology66, 297–327.

Ming T. 2000. Monograph of the Genus ‘Camellia’. Yunnan Science and Technology Press, China. (in Chinese)

Ming T, Bartholomew B. 2007. Theaceae. In: Wu Z, Raven P, Hong D, eds., Flora of China. Science Press, Beijing. pp. 366–478.

Navrátilová B, Ondřej V, Vrchotová N, Tříska J, Horník Š, Pavela R. 2022. Impact of artificial polyploidization in Ajuga reptans on content of selected biologically active glycosides and phytoecdysone. Horticulturae8, 581.

Parsons J L, Martin S L, James T, Golenia G, Boudko E A, Hepworth S R. 2019. Polyploidization for the genetic improvement of Cannabis sativaFrontiers in Plant Science10, 476.

Van de Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics18, 411–424.

Peng S, Lu J, Zhang Z, Ma L, Liu C, Chen Y. 2020. Global Transcriptome and correlation analysis reveal cultivar-specific molecular signatures associated with fruit development and fatty acid determination in Camellia oleifera Abel. International Journal of Genomics2020, 6162802.

Qin S, Rong J, Zhang W, Chen J. 2018. Cultivation history of Camellia oleifera and genetic resources in the Yangtze River Basin. Biodiversity Science26, 384–395. (in Chinese)

Qin S Y, Chen K, Zhang W J, Xiang X G, Zuo Z Y, Guo C, Zhao Y, Li L F, Wang Y G, Song Z P, Yang J, Yang X Q, Zhang J, Jin W T, Wen Q, Zhao S Z, Chen J K, Li D Z, Rong J. 2024. Phylogenomic insights into the reticulate evolution of Camellia sect. Paracamellia Sealy (Theaceae). Journal of Systematics and Evolution62, 38–54.

Ramsey J, Ramsey T S. 2014. Ecological studies of polyploidy in the 100 years following its discovery. Philosophical Transactions of the Royal Society (B: Biological Sciences), 369, 20130352.

Renny-Byfield S, Wendel J F. 2014. Doubling down on genomes: Polyploidy and crop plants. American Journal of Botany101, 1711–1725.

Song C, Liu S, Xiao J, He W, Zhou Y, Qin Q, Zhang C, Liu Y. 2012. Polyploid organisms. Science China Life Sciences55, 301–311.

Song Q, Ji K, Yu X, Chen L, Wang L, Gong W, Yuan D. 2022. Dynamic metabolic and transcriptomic profiling reveal synthetic characters and regulators of flavonoid biosynthesis in Camellia oleifera seeds. Industrial Crops and Products186, 115295.

Stebbins G L. 1942. Polyploid Complexes in relation to ecology and the history of floras. The American Naturalist76, 36–45.

Sun P, Nishiyama S, Asakuma H, Voorrips R E, Fu J, Tao R. 2021. Genomics-based discrimination of 2n gamete formation mechanisms in polyploids: A case study in nonaploid Diospyros kaki ‘Akiou’. G3Genes|Genomes|Genetics11, jkab188.

Vilcherrez-Atoche J A, Iiyama C M, Cardoso J C. 2022. Polyploidization in orchids: From cellular changes to breeding applications. Plants-basel11, 469.

Wendel J F, Cronn R C. 2003. Polyploidy and the evolutionary history of cotton. Advances in Agronomy78, 139–186.

Wu H, Li C, Li Z, Liu R, Zhang A, Xiao Z, Ma L, Li J, Deng S. 2018. Simultaneous extraction of oil and tea saponin from Camellia oleifera Abel. seeds under subcritical water conditions. Fuel Processing Technology174, 88–94.

Wu J H, Ferguson A R, Murray B G, Jia Y, Datson P M, Zhang J. 2011. Induced polyploidy dramatically increases the size and alters the shape of fruit in Actinidia chinensisAnnals of Botany109, 169–179.

Wu S, Cheng J, Xu X, Zhang Y, Zhao Y, Li H, Qiang S. 2019. Polyploidy in invasive Solidago canadensis increased plant nitrogen uptake, and abundance and activity of microbes and nematodes in soil. Soil Biology and Biochemistry138, 107594.

Xu Z, Yuan D, Tang Y, Wu L, Zhao Y. 2020. Camellia hainanica (Theaceae) a new species from Hainan, supported from morphological characters and phylogenetic analysis. Pakistan Journal of Botany52, 1025–1032.

Zhang W, Ming T. 1999. A cytogeological study of genus CamelliaPlant Diversity21, 1–3.

Zhang Y, Zhong C, Liu Y, Zhang Q, Sun X, Li D. 2017. Agronomic trait variations and ploidy differentiation of kiwiberries in Northwest China: Implication for breeding. Frontiers in Plant Science8, 711.

Zhang Z X, Tan M P, Zhang Y Y, Jia Y, Zhu S X, Wang J, Zhao J J, Liao Y Y, Xiang Z X. 2021. Integrative analyses of targeted metabolome and transcriptome of Isatidis Radix autotetraploids highlighted key polyploidization-responsive regulators. BMC Genomics22, 1–13.

Zhao D W, Hodkinson T R, Parnell J A N. 2022. Phylogenetics of global Camellia (Theaceae) based on three nuclear regions and its implications for systematics and evolutionary history. Journal of Systematics and Evolution61, 356–368.

Zhuang R. 2008. Chinese Oil-tea Camellia. Chinese Forestry Publishing House, Beijing, China. (in Chinese)

No related articles found!
No Suggested Reading articles found!