Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (9): 3529-3545    DOI: 10.1016/j.jia.2024.03.004
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2

Yufeng Xiao1, Meiqi Dong1, Xian Wu2, Shuang Liang1, Ranhong Li1, Hongyu Pan3, Hao Zhang1#

1 College of Plant Protection, Jilin Agricultural University, Changchun 130118, China

2 Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun 130000, China

3 College of Plant Sciences, Jilin University, Changchun 130062, China

 Highlights 
● The adaptive mechanism of consortium YM2 was examined.
● Changes in expressions of biofilm-forming related genes were studied.
Bioreactor bioremediation of NSR wastewater was performed.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
烟嘧磺隆(NSR)是一种磺酰脲类除草剂,极易进入土壤和水体,影响自然环境和人类健康。本研究从某农药厂的活性淤泥中富集和驯化出降解菌群YM2,对烟嘧磺隆进行生物修复。对菌群YM2的培养基优化,筛选出最适碳源、氮源和无机盐分别为葡萄糖、酵母粉和NaCl,对其响应面分析,确定最佳培养条件为:9.41 g L1麦芽糊精、21.37 g L1酵母粉和12.45g L1NaCl,在此培养基下菌群YM2对烟嘧磺隆的降解率达97.49%。优化菌群YM2对烟嘧磺隆的在不同环境条件下的降解特性,最佳降解条件为30℃、pH 6.0、菌群YM2的接种量1%、20 mg L1烟嘧磺隆初始浓度。并且,菌群YM2对Cd2+、Pb2+、Ni2+、ZN2+等重金属离子耐受,可以在重金属离子胁迫下生长和降解。菌群YM2主要通过胞外酶降解烟嘧磺隆,降解率92.17%。在降解过程中,细胞膜通透性、细胞表面疏水性、活性氧含量、超氧化物歧化酶、过氧化氢酶、过氧化物酶、丙二醛含量、和细胞凋亡率均呈现先升高后降低的趋势,受到烟嘧磺隆胁迫时,激发菌群YM2的氧化应激系统,提升抗氧化酶活性,降低活性氧,并降解烟嘧磺隆,是菌群YM2的适应机制,即对烟嘧磺隆胁迫的应激反应。生物膜形成相关基因luxSwaaEspo0Awza的表达随时间和烟嘧磺隆浓度的变化而变化。适量的烟嘧磺隆诱导生物膜形成和激发氧化应激系统。污水和土壤中的20 mg kg1烟嘧磺隆分别被降至1.92 mg L1和2.72 mg L1,降解率达90.4%和86.4%。在模拟污水处理装置中,水力停留时间12 h时,第一阶段(前3 d)仅添加烟嘧磺隆,第二阶段(3-10 d)添加菌群YM2,10天后菌群YM2降解了84.55%的烟嘧磺隆。本研究为烟嘧磺隆的微生物修复提供了理论依据。


Abstract  

Nicosulfuron (NSR), a sulfonylurea herbicide, readily infiltrates water bodies, potentially compromising aquatic ecosystems and human health.  In this study, bacteria consortium YM2 was isolated and cultivated from pesticide plant active sludge for NSR wastewater bioremediation.  Response surface methodology analysis demonstrated that under optimal cultivation conditions (9.41 g L–1 maltodextrin, 21.37 g L–1 yeast extract, and 12.45 g L–1 NaCl), the YM2 bacteria consortium achieved 97.49% NSR degradation within 4 d.  Optimal degradation parameters were established at 30°C, pH 6.0, 1% inoculum, and 20 mg L–1 initial NSR concentration.  The degradation system demonstrated resistance to heavy metal ions including Cd2+, Pb2+, Ni2+, and Zn2+, with degradation primarily occurring through bacterial extracellular enzymes (92.17%).  During the degradation process, reactive oxygen species, oxidative stress, cell membrane permeability, cell surface hydrophobicity, and apoptosis rate exhibited initial increases followed by decreases.  Additionally, biofilm formation-related genes luxS, waaE, spo0A, and wza showed temporal and concentration-dependent expression patterns.  NSR concentrations in wastewater and soil were reduced to 1.92 and 2.72 mg L–1, respectively.  In a simulated wastewater treatment unit with a 12-h hydraulic retention time, YM2 achieved 84.55% NSR degradation after 10 d.  These findings provide a theoretical foundation for microbial remediation of NSR contamination.

Keywords:  sulfonylurea herbicide       bioremediation        response surface methodology       microbial degradation process  
Received: 24 October 2023   Online: 02 March 2024   Accepted: 02 January 2024
Fund: This work was financially supported by the Jilin Province Development and Reform Commission (Innovation Capacity Building) Project, China (20231036-3) and the Key R&D Project of the Science and Technology Development Plan of Jilin, China (20230203014SF).
About author:  Yufeng Xiao, E-mail: xyfethan@163.com; #Correspondence Hao Zhang, E-mail: haozhang100@163.com

Cite this article: 

Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. 2025. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2. Journal of Integrative Agriculture, 24(9): 3529-3545.

Almeida D G, Silva M G C, Barbosa R N B, Silva D S P, Silva R O, Lima G M S, Gusmão N B, Sousa M F V Q. 2017. Biodegradation of marine fuel MF-380 by microbial consortium isolated from seawater near the petrochemical Suape Port, Brazil. International Biodeterioration & Biodegradation116, 73–82.

Balkrishna A, Sengupta S, Kumari P, Dev R, Haldar S, Varshney A. 2023. Anu Taila, an herbal nasal-drop, delays spore germination in Cunninghamella bertholletiae by reducing cAMP-PKA dependent ROS in mucorale pathogen and extrinsic ROS in human host cells. Letters in Applied Microbiology16, ovad014.

Bhatt P, Bhatt K, Sharma A, Zhang W, Mishra S, Chen S. 2021. Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Critical Reviews in Biotechnology, 41, 317338.

Cao X, Li Y, Fan J, Zhao Y, Borriss R, Fan B. 2021. Two lysine sites that can be malonylated are important for LuxS regulatory roles in Bacillus velezensisMicroorganisms9, 1338.

Carles L, Joly M, Bonnemoy F, Leremboure M, Batisson I, Besse-Hoggan P. 2017. Identification of sulfonylurea biodegradation pathways enabled by a novel nicosulfuron-transforming strain Pseudomonas fluorescens SG-1: Toxicity assessment and effect of formulation. Journal of Hazardous Materials324(Part B), 184–193.

Cheron M, Costantini D, Brischoux F. 2022. Nicosulfuron, a sulfonylurea herbicide, alters embryonic development and oxidative status of hatchlings at environmental concentrations in an amphibian species. Ecotoxicology and Environmental Safety232, 113277.

Chuah L F, Chew K W, Bokhari A, Mubashir M, Show P L. 2022. Biodegradation of crude oil in seawater by using a consortium of symbiotic bacteria. Environmental Research213, 113721.

Erental A, Sharon I, Engelberg-Kulka H. 2012. Two programmed cell death systems in Escherichia coli: An apoptotic-like death is inhibited by the mazEF-mediated death pathway, PLoS Biology10, 1–13.

Fenoll J, Hellín P, Flores P, Martínez C M, Navarro S. 2012. Photocatalytic degradation of five sulfonylurea herbicides in aqueous semiconductor suspensions under natural sunlight. Chemosphere87, 954–961.

Francisco E C, Franco T T, Wagner R, Jacob-Lopes E. 2014. Assessment of different carbohydrates as exogenous carbon source in cultivation of cyanobacteria. Bioprocess and Biosystems Engineering37, 1497–1505.

Gao Q, Huo J, Chen L, Yang D, Zhang W, Jia B, Xu X, Barnych B, Zhang J, Hammock B D. 2023. Development of immunoassay based on a specific antibody for sensitive detection of nicosulfuron in environment. Science of the Total Environment859(Part 1), 160247.

Gu X, Zheng L, Zhai Q, Sun J, He H, Tang Y, Liang S, Zhang H. 2022. Optimization of fermentation medium for biocontrol strain Pantoea jilinensis D25 and preparation of its microcapsules. Process Biochemistry121, 216–227.

Huang Q, Zhang Z, Liu Q, Liu F, Liu Y, Zhang J, Wang G. 2021. SpoVG is an important regulator of sporulation and affects biofilm formation by regulating Spo0A transcription in Bacillus cereus 0-9. BMC Microbiology21, 172.

Huang Y, Chen S, Chen W, Zhu X, Mishra S, Bhatt P, Chen S. 2023. Efficient biodegradation of multiple pyrethroid pesticides by Rhodococcus pyridinivorans strain Y6 and its degradation mechanism. Chemical Engineering Journal469, 143863.

Izquierdo L, Abitiu N, Coderch N, Hita B, Merino S, Gavin R, Tomás J M, Regué M. 2002. The inner-core lipopolysaccharide biosynthetic waaE gene: Function and genetic distribution among some EnterobacteriaceaeMicrobiology148(Pt 11), 3485–3496.

Kuc M E, Azerrad S, Menashe O, Kurzbaum E. 2022. Efficient biodegradation of phenol at high concentrations by Acinetobacter biofilm at extremely short hydraulic retention times. Journal of Water Process Engineering47, 102781.

Lafontaine Y, Beauvais C, Cessna A J, Gagnon P, Hudon C, Poissant L. 2014. Sulfonylurea herbicides in an agricultural catchment basin and its adjacent wetland in the St. Lawrence River basin. Science of the Total Environment479–480, 1–10.

Li M, Song J, Ma Q, Kong D, Zhou Y, Jiang X, Parales R, Ruan Z, Zhang Q. 2020. Insight into the characteristics and new mechanism of nicosulfuron biodegradation by a Pseudomonas sp. LAM1902. Journal of Agricultural and Food Chemistry68, 826–837.

Li M, Yin H, Zhu M, Yu Y, Lu G, Dang Z. 2021. Co-metabolic and biochar-promoted biodegradation of mixed PAHs by highly efficient microbial consortium QY1. Journal of Environmental Sciences107, 65–76.

Lin Z, Pang S, Zhang W, Mishra S, Bhatt P, Chen S. 2020. Degradation of acephate and its intermediate methamidophos: Mechanisms and biochemical pathways. Frontiers of Microbiology11, 2045.

Lin Z, Pang S, Zhou Z, Wu X, Li J, Huang Y, Zhang W, Lei Q, Bhatt P, Mishra S, Chen S. 2022. Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation. Journal of Hazardous Materials426, 127841.

Ma Q, Han X, Song J, Wang J, Li Q, Paraled R E, Li L, Ruan Z. 2023. Characterization of a new chlorimuron-ethyl-degrading strain Cedecea sp. LAM2020 and biodegradation pathway revealed by multiomics analysis. Journal of Hazardous Materials443(Part A), 130197.

Nguyen H T, Siddiqui S I, Maeng S K, Oh S. 2023. Biological detoxification of oxytetracycline using Achromobacter-immobilized bioremediation system. Journal of Water Process Engineering52, 103491.

Niu T, Guo L, Luo Q, Yu W, Chen Y, Huang C, Xiao Y. 2020. Wza gene knockout decreases Acinetobacter baumannii virulence and affects Wzy-dependent capsular polysaccharide synthesis. Virulence11, 1–13.

Pang S, Lin Z, Chen W, Chen S, Huang Y, Bhatt P, Mishra S, Chen S, Wang H. 2023. High-efficiency degradation of methomyl by the novel bacterial consortium MF0904: Performance, structural analysis, metabolic pathways, and environmental bioremediation, Journal of Hazardous Materials452, 131287.

Park Y, Bhatia S K, Guray R, Choi T, Kim H J, Song H, Park J, Han Y, Lee S M, Park L S, Lee H S, Kim Y G, Yang Y. 2020. Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies. International Journal of Biological Macromolecules154, 929–936.

Purnomo A S, Sariwati A, Kamei I. 2020. Synergistic interaction of a consortium of the brown-rot fungus Fomitopsis pinicola and the bacterium Ralstonia pickettii for DDT biodegradation. Heliyon6, e04027.

Qi X, Yin H, Zhu M, Shao P, Dang Z. 2022. Understanding the role of biochar in affecting BDE-47 biodegradation by Pseudomonas plecoglossicida: An integrated analysis using chemical, biological, and metabolomic approaches. Water Research220, 118679.

Qi X, Zhu M, Yuan Y, Rong X, Dang Z, Yin H. 2023. Integrated toxicology, metabolomics, and transcriptomics analyses reveal the biodegradation and adaptation mechanisms to BDE-47 in Pseudomonas plecoglossicidaChemical Engineering Journal454(Part 4), 140412.

Rafieenia R, Mahmoud M, EI-Gohary F, Rossa C A. 2022. The degradation of glyphosate is enhanced in a microbial fuel cell: Electrochemical performance, degradation efficiency, and analysis of the anodic microbial community. Sustainable Energy Technologies and Assessments54, 102805.

Sharma S, Pandey L M. 2022. Biodegradation kinetics of binary mixture of hexadecane and phenanthrene by the bacterial microconsortium. Bioresource Technology358, 127408.

Reiter J, Herker E, Madeo F, Schmitt M J. 2005. Viral killer toxins induce caspase-mediated apoptosis in yeast. Journal of Cell Biology168, 353–361.

Song J, Gu J, Zhai Y, Wu W, Wang H, Ruan Z, Shi Y, Yan Y. 2013. Biodegradation of nicosulfuron by a Talaromyces flavus LZM1. Bioresource Technology140, 243–248.

Tang S, Yin H, Chen S, Peng H, Chang J, Liu Z, Dang Z. 2016. Aerobic degradation of BDE-209 by Enterococcus casseliflavus: Isolation, identification and cell changes during degradation process. Journal of Hazardous Materials308, 335–342.

Wang L, Zhang X, Li Y. 2016. Degradation of nicosulfuron by a novel isolated bacterial strain Klebsiella sp. Y1: Condition optimization, kinetics and degradation pathway. Water Science & Technology73, 2896–2903.

Yu Y, Yin H, Peng H, Lu G, Dang Zhi D. 2020. Proteomic mechanism of decabromodiphenyl ether (BDE-209) biodegradation by Microbacterium Y2 and its potential in remediation of BDE-209 contaminated water-sediment system. Journal of Hazardous Materials387, 121708.

Zang H, Yu Q, Lv T, Cheng Y, Feng L, Cheng X, Li C. 2016. Insights into the degradation of chlorimuron-ethyl by Stenotrophomonas maltophilia D310-3. Chemosphere144, 176–184.

Zhang H, Mu W, Hou Z, Wu X, Zhao W, Zhang X, Pan H, Zhang S. 2012. Biodegradation of nicosulfuron by the bacterium Serratia marcescens N80. Journal of Environmental Science Health B47, 153–160.

Zhang H, Qian Y, Fan D, Tian Y, Huang X. 2022. Biofilm formed by Hansschlegelia zhihuaiae S113 on root surface mitigates the toxicity of bensulfuron-methyl residues to maize. Environmental Pollution292(Part A), 118366.

Zhang W, Chen W, Chen S, Lei Q, Li J, Bhatt P, Mishra S, Chen S. 2023. Cellular Response and Molecular Mechanism of Glyphosate Degradation by Chryseobacterium sp. Y16C. Journal of Agricultural and Food Chemistry71, 6650–6661.

Zhang Y, Mao G, Liu R, Zhou X, Bartlam M, Wang Y. 2022. Transcriptome profiling of Stenotrophomonas sp. strain WZN-1 reveals mechanisms of 2,2´,4,4´tetrabromodiphenyl ether (BDE-47) biotransformation. Environmental Science & Technology56, 11288–11299.

Zhang Z, Yang D, Si H, Wang J, Parales R E, Zhang J. 2020. Biotransformation of the herbicide nicosulfuron residues in soil and seven sulfonylurea herbicides by Bacillus subtilis YB1: A climate chamber study. Environmental Pollution263(Part B), 114492.

Zhai Q, Pan Z, Zhang C, Yu H, Zhang M, Gu X, Zhang X, Pan H, Zhang H. 2023. Colonization by Klebsiella variicola FH-1 stimulates soybean growth and alleviates the stress of Sclerotinia sclerotiorumJournal of Integrative Agriculture22, 2729–2745.

Zhao H, Zhu J, Liu S, Zhou X. 2018. Kinetics study of nicosulfuron degradation by a Pseudomonas nitroreducens strain NSA02. Biodegradation29, 271–283.

Zhao W, Wang C, Xu L, Zhao C, Liang H, Qiu L. 2015. Biodegradation of nicosulfuron by a novel Alcaligenes faecalis strain ZWS11. Journal of Environmental Sciences35, 151–162.

Zheng Z, Ali A, Su J, Zhang S, Fan Y, Sun Y. 2021. Self-immobilized biochar fungal pellet combined with bacterial strain H29 enhanced the removal performance of cadmium and nitrate. Bioresource Technology341, 125803.

Zhong J, Wu S, Chen W, Huang Y, Lei Q, Mishra S, Bhatt P, Chen S. 2023. Current insights into the microbial degradation of nicosulfuron: Strains, metabolic pathways, and molecular mechanisms. Chemosphere326, 138390,

Zhou K, Qiao K, Edgar S, Stephanopoulos G. 2015. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nature Biotechnology 33, 377–383.

Zhou Y, Sun Y, He H, Feng J, Zhang X, Han L. 2017. Optimization of medium compositions to improve a novel glycoprotein production by Streptomyces kanasenisi ZX01. AMB Express7, 17864642.

Zhu Y, Cheng J, Zhang Z, Li H, Wang Z. 2021. Promoting extracellular polymeric substances to alleviate phenol toxicity in Arthrospira platensis at high carbon dioxide concentrations. Journal of Cleaner Production290, 125167.

[1] ZHAO Li-juan, XIE Jing-fang, ZHANG Hong, WANG Zhen-tao, JIANG Hong-jin, GAO Shao-long . Enzymatic activity and chlorophyll fluorescence imaging of maize seedlings (Zea mays L.) after exposure to low doses of chlorsulfuron and cadmium[J]. >Journal of Integrative Agriculture, 2018, 17(04): 826-836.
No Suggested Reading articles found!