Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (03): 975-987    DOI: 10.1016/j.jia.2023.10.009
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |

Assessing the conservation impact of Chinese indigenous chicken populations between ex-situ and in-situ using genome-wide SNPs

Wenting Li1, 2, Chaoqun Gao1, 2, Zhao Cai1, Sensen Yan1, 2, Yanru Lei1, 2, Mengya Wei1, Guirong Sun1, 2, Yadong Tian1, 2, Kejun Wang1, 2#, Xiangtao Kang1, 2#

1 College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
2 The Shennong Laboratory, Zhengzhou 450002, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

为了保护各保种群体的遗传多样性和环境适应力,保种计划需要进行严格的评估。本研究利用全基因组SNP对中国两个地方鸡品种固始鸡 (GS) 骨鸡 (XB) 的不同保种群进行了比较分析,以探究它们的遗传多样性和群体结构随时间的动态变化。根据保护方法和世代的不同,本研究GSXB分为五个保种群:GS1 (2010年采样,异地保种)GS2 (2019年采样,异地保种)GS3 (2019年采样,原产地保种)XB1 (2010年采样,原产地保种) XB2 (2019年采样,原产地保种)研究采分组计算观测杂合度、期望杂合度、多态性位点、等位基因丰度、核苷酸多样性、近交系数、连续性纯合片段、遗传多样性贡献度、连锁不平衡衰减及历史有效群体大小变化分析保种群遗传多样性动态变化。利用进化树、主成分分析和祖先成分分析等方法分析保种群的群体结构。结果表明,GS保种群 (GS1,G2GS3)的遗传多样性指标变化趋势一致,原产地保护策略下的GS3种群具有最高的多样性,异地保种策略下的GS2种群遗传多样性最低,且GS2的近交程度高于GS1GS3采用原产地保种策略的XB保种群 (XB1XB2) 的遗传多样性没有明显变化。根据遗传多样性贡献度分析GS3GS品种中对总基因和等位基因多样性的贡献最高,而XB1XB2遗传贡献相似。此外,尽管GS2GS3属于相同的世代,但在不同的保护计划(原产地保种)下,GS2的遗传多样性较低XB1XB2的遗传多样性水平相似。在群体结构方面,GS保种群与XB保种群呈现群体分层,GS3与GS1及GS2呈现群体分层XB1XB2无明显群体分层。总体而言,我们的研究结果表明,异地保种策略可以减缓近交事件的发生,但在保种群规模较小的情况下,无法完全防止遗传多样性的丧失;而原产地保护种群由于种群规模较大,可以维持较低的近交增量,维持相对较高的遗传多样性水平。



Abstract  Conservation programs require rigorous evaluation to ensure the preservation of genetic diversity and viability of conservation populations.  In this study, we conducted a comparative analysis of two indigenous Chinese chicken breeds, Gushi and Xichuan black-bone, using whole-genome SNPs to understand their genetic diversity, track changes over time and population structure.  The breeds were divided into five conservation populations (GS1, 2010, ex-situ; GS2, 2019, ex-situ; GS3, 2019, in-situ; XB1, 2010, in-situ; and XB2, 2019, in-situ) based on conservation methods and generations.  The genetic diversity indices of three conservation populations of Gushi chicken showed consistent trends, with the GS3 population under in-situ strategy having the highest diversity and GS2 under ex-situ strategy having the lowest.  The degree of inbreeding of GS2 was higher than that of GS1 and GS3.  Conserved populations of Xichuan black-bone chicken showed no obvious changes in genetic diversity between XB1 and XB2.  In terms of population structure, the GS3 population were stratified relative to GS1 and GS2.  According to the conservation priority, GS3 had the highest contribution to the total gene and allelic diversity in GS breed, whereas the contribution of XB1 and XB2 were similar.   We also observed that the genetic diversity of GS2 was lower than GS3, which were from the same generation but under different conservation programs (in-situ and ex-situ).  While XB1 and XB2 had similar levels of genetic diversity.  Overall, our findings suggested that the conservation programs performed in ex-situ could slow down the occurrence of inbreeding events, but could not entirely prevent the loss of genetic diversity when the conserved population size was small, while in-situ conservation populations with large population size could maintain a relative high level of genetic diversity.
Keywords:  Genome-wide SNPs       Conservation        Genetic diversity        Ex-situ       in-situ   
Received: 01 April 2023   Accepted: 09 September 2023
Fund: This work supported by the Key Research Project of the Shennong Laboratory, Henan Province, China (SN01-2022-05), the National Natural Science Foundation of China (32272866), the Young Elite Scientists Sponsorship Program by CAST (2021QNRC001) and the Starting Foundation for Outstanding Young Scientists of Henan Agricultural University, China (30500664&30501280).

About author:  #Correspondence Kejun Wang, E-mail: wangkejun.me@163.com; Xiangtao Kang, E-mail: xtkang2001@263.net

Cite this article: 

Wenting Li, Chaoqun Gao, Zhao Cai, Sensen Yan, Yanru Lei, Mengya Wei, Guirong Sun, Yadong Tian, Kejun Wang, Xiangtao Kang. 2024.

Assessing the conservation impact of Chinese indigenous chicken populations between ex-situ and in-situ using genome-wide SNPs . Journal of Integrative Agriculture, 23(03): 975-987.

Ablondi M, Dadousis C, Vasini M, Eriksson S, Mikko S, Sabbioni A. 2020. Genetic diversity and signatures of selection in a native Italian horse breed based on SNP data. Animals, 10, 1005.

Al-Mamun H A, Clark S, Kwan P, Gondro C. 2015. Genome-wide linkage disequilibrium and genetic diversity in five populations of Australian domestic sheep. Genetics Selection Evolution, 47, 1–14.

Boettcher P, Tixier-Boichard M, Toro M, Simianer H, Eding H, Gandini G, Joost S, Garcia D, Colli L, Ajmone-Marsan P. 2010. Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources. Animal Genetics, 41, 64–77.

Boichard D, Ducrocq V, Fritz S. 2015. Sustainable dairy cattle selection in the genomic era. Journal of Animal Breeding and Genetics, 132, 135–143.

Bortoluzzi C, Crooijmans R P, Bosse M, Hiemstra S J, Groenen M A, Megens H J. 2018. The effects of recent changes in breeding preferences on maintaining traditional Dutch chicken genomic diversity. Heredity, 121, 564–578.

Bosse M, Megens H J, Madsen O, Crooijmans R P, Ryder O A, Austerlitz F, Groenen M A, de Cara M A R. 2015. Using genome-wide measures of coancestry to maintain diversity and fitness in endangered and domestic pig populations. Genome Research, 25, 970–981.

Ceballos F C, Joshi P K, Clark D W, Ramsay M, Wilson J F. 2018. Runs of homozygosity: Windows into population history and trait architecture. Nature Reviews Genetics, 19, 220–234.

Cendron F, Mastrangelo S, Tolone M, Perini F, Lasagna E, Cassandro M. 2021. Genome-wide analysis reveals the patterns of genetic diversity and population structure of 8 Italian local chicken breeds. Poultry Science, 100, 441–451.

Cendron F, Perini F, Mastrangelo S, Tolone M, Criscione A, Bordonaro S, Iaffaldano N, Castellini C, Marzoni M, Buccioni A. 2020. Genome-wide SNP analysis reveals the population structure and the conservation status of 23 Italian chicken breeds. Animals, 10, 1441.

Chen G, Bao W, Shu J, Ji C, Wang M, Eding H, Muchadeyi F, Weigend S. 2008. Assessment of population structure and genetic diversity of 15 Chinese indigenous chicken breeds using microsatellite markers. Asian-Australasian Journal of Animal Sciences, 21, 331–339.

Chen L, Wang X, Cheng D, Chen K, Fan Y, Wu G, You J, Liu S, Mao H, Ren J. 2019. Population genetic analyses of seven Chinese indigenous chicken breeds in a context of global breeds. Animal Genetics, 50, 82–86.

Chen X. 2019. Analysis on the protection of genetic resources from the perspective of intellectual property. Advances in Applied Sociology, 9, 163.

Cortés O, Martinez A, Cañon J, Sevane N, Gama L, Ginja C, Landi V, Zaragoza P, Carolino N, Vicente A. 2016. Conservation priorities of Iberoamerican pig breeds and their ancestors based on microsatellite information. Heredity, 117, 14–24.

Danecek P, Auton A, Abecasis G, Albers C A, Banks E, DePristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T. 2011. The variant call format and VCFtools. Bioinformatics, 27, 2156–2158.

Giani A M, Gallo G R, Gianfranceschi L, Formenti G. 2020. Long walk to genomics: History and current approaches to genome sequencing and assembly. Computational and Structural Biotechnology Journal, 18, 9–19.

Goudet J. 2005. Hierfstat, a package for R to compute and test hierarchical F-statistics. Molecular Ecology Notes, 5, 184–186.

Hohenlohe P A, Funk W C, Rajora O P. 2021. Population genomics for wildlife conservation and management. Molecular Ecology, 30, 62–82.

Howard J T, Pryce J E, Baes C, Maltecca C. 2017. Invited review: Inbreeding in the genomics era: Inbreeding, inbreeding depression, and management of genomic variability. Journal of Dairy Science, 100, 6009–6024.

Kim E S, Cole J B, Huson H, Wiggans G R, Van Tassell C P, Crooker B A, Liu G, Da Y, Sonstegard T S. 2013. Effect of artificial selection on runs of homozygosity in US Holstein cattle. PLoS ONE, 8, e80813.

Kumar R, Salar R K, Naik P K, Yadav M, Kumar A, Kumar A, Yogi R, Kumar M, Chhokar V. 2022. Elucidation of genetic diversity and population structure of sixty genotypes of Aloe vera using AFLP markers. South African Journal of Botany, 147, 1146–1155.

Lawal R A, Hanotte O. 2021. Domestic chicken diversity: Origin, distribution, and adaptation. Animal Genetics, 52, 385–394.

Letunic I, Bork P. 2019. Interactive tree of life (iTOL) v4: Recent updates and new developments. Nucleic Acids Research, 47, W256–W259.

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, arXiv:1303.3997.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup G P D P. 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078–2079.

Lin R, Li J, Yang Y, Yang Y, Chen J, Zhao F, Xiao T. 2022. Genome-wide population structure analysis and genetic diversity detection of four chinese indigenous duck breeds from Fujian Province. Animals, 12, 2302.

López-Cortegano E, Pérez-Figueroa A, Caballero A. 2019. Metapop2: Re-implementation of software for the analysis and management of subdivided populations using gene and allelic diversity. Molecular Ecology Resources, 19, 1095–1100.

Luo Y, Zhang X, Xu J, Zheng Y, Pu S, Duan Z, Li Z, Liu G, Chen J, Wang Z. 2020. Phenotypic and molecular marker analysis uncovers the genetic diversity of the grass Stenotaphrum secundatum. BMC Genetics, 21, 1–12.

Malomane D K, Simianer H, Weigend A, Reimer C, Schmitt A O, Weigend S. 2019. The SYNBREED chicken diversity panel: A global resource to assess chicken diversity at high genomic resolution. BMC Genomics, 20, 1–15.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M. 2010. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297–1303.

Onzima R B, Upadhyay M R, Doekes H P, Brito L F, Bosse M, Kanis E, Groenen M A, Crooijmans R P. 2018. Genome-wide characterization of selection signatures and runs of homozygosity in Ugandan goat breeds. Frontiers in Genetics, 9, 318.

Ortiz E M. 2019. Vcf2phylip v2. 0: Convert a VCF matrix into several matrix formats for phylogenetic analysis. Zenodo, doi: 105281/zenodo.2540861.

Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, Genschoreck T, Webster T, Reich D. 2012. Ancient admixture in human history. Genetics, 192, 1065–1093.

Peripolli E, Munari D, Silva M, Lima A, Irgang R, Baldi F. 2017. Runs of homozygosity: Current knowledge and applications in livestock. Animal Genetics, 48, 255–271.

Peters J, Lebrasseur O, Irving-Pease E K, Paxinos P D, Best J, Smallman R, Callou C, Gardeisen A, Trixl S, Frantz L. 2022. The biocultural origins and dispersal of domestic chickens. Proceedings of the National Academy of Sciences of the United States of America, 119, e2121978119.

Price M N, Dehal P S, Arkin A P. 2010. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE, 5, e9490.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, De Bakker P I, Daly M J. 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81, 559–575.

Schurink A, Arts D, Ducro B. 2012. Genetic diversity in the Dutch harness horse population using pedigree analysis. Livestock Science, 143, 270–277.

Shang P, Li W, Tan Z, Zhang J, Dong S, Wang K, Chamba Y. 2020. Population genetic analysis of ten geographically isolated tibetan pig populations. Animals, 10, 1297.

Sørensen M, Sørensen A, Baumung R, Borchersen S, Berg P. 2008. Optimal genetic contribution selection in Danish Holstein depends on pedigree quality. Livestock Science, 118, 212–222.

Sun X, Guo J, Li L, Zhong T, Wang L, Zhan S, Lu J, Wang D, Dai D, Liu G E. 2022. Genetic diversity and selection signatures in Jianchang black goats revealed by whole-genome sequencing data. Animals, 12, 2365.

Talebi R, Szmatoła T, Mészáros G, Qanbari S. 2020. Runs of homozygosity in modern chicken revealed by sequence data. G3: Genes, Genomes, Genetics, 10, 4615–4623.

Terhorst J, Kamm J A, Song Y S. 2017. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nature Genetics, 49, 303–309.

Wang K, Hu H, Tian Y, Li J, Scheben A, Zhang C, Li Y, Wu J, Yang L, Fan X. 2021. The chicken pan-genome reveals gene content variation and a promoter region deletion in IGF2BP1 affecting body size. Molecular Biology and Evolution, 38, 5066–5081.

Wang M S, Thakur M, Peng M S, Jiang Y, Frantz L A F, Li M, Zhang J J, Wang S, Peters J, Otecko N O. 2020. 863 genomes reveal the origin and domestication of chicken. Cell Research, 30, 693–701.

Xiao Z, Ge C, Zhou G, Zhang W, Liao G. 2019. 1H NMR-based metabolic characterization of Chinese Wuding chicken meat. Food Chemistry, 274, 574–582.

Yang X, E G X, Yang B G, Liu C L, Guo Y, Gong Y, Chen B E, Zhang D P, Li M H. 2022. Genetic diversity and phylogeny pattern across Chongqing (China) chicken populations using mtDNA D-Loop sequences. Russian Journal of Genetics, 58, 1007–1016.

Zhang C, Dong S S, Xu J Y, He W M, Yang T L. 2019a. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics, 35, 1786–1788.

Zhang C, Lin D, Wang Y, Peng D, Li H, Fei J, Chen K, Yang N, Hu X, Zhao Y. 2019b. Widespread introgression in Chinese indigenous chicken breeds from commercial broiler. Evolutionary Applications, 12, 610–621.

Zhang J, Nie C, Li X, Ning Z, Chen Y, Jia Y, Han J, Wang L, Lv X, Yang W. 2020. Genome-wide population genetic analysis of commercial, indigenous, game, and wild chickens using 600K SNP microarray data. Frontiers in Genetics, 11, 543294.

Zhang M, Han W, Tang H, Li G, Zhang M, Xu R, Liu Y, Yang T, Li W, Zou J. 2018. Genomic diversity dynamics in conserved chicken populations are revealed by genome-wide SNPs. BMC Genomics, 19, 1–12.

Zhang M, Liu Y, Zhang H, Wu K. 2020. Conservation of genomic diversity and breed-specific characteristics of domestic chickens in China. Authorea Preprints, doi: 10.22541/au.158082855.59429234.

Zhao Q B, López-Cortegano E, Oyelami F O, Zhang Z, Ma P P, Wang Q S, Pan Y C. 2021. Conservation priorities analysis of chinese indigenous pig breeds in the Taihu lake region. Frontiers in Genetics, 12, 558873.

[1] TAO Ling-ling, TING Yu-jie, CHEN Hong-rong, WEN Hui-lin, XIE Hui, LUO Ling-yao, HUANG Ke-lin, ZHU Jun-yan, LIU Sheng-rui, WEI Chao-ling. Core collection construction of tea plant germplasm in Anhui Province based on genetic diversity analysis using simple sequence repeat markers[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2719-2728.
[2] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
[3] LIU You-hong, TANG Liang, XU Quan, MA Dian-rong, ZHAO Ming-hui, SUN Jian, CHEN Wen-fu. Experimental and genomic evidence for the indica-type cytoplasmic effect in Oryza sativa L. ssp. japonica[J]. >Journal of Integrative Agriculture, 2016, 15(10): 2183-2191.
No Suggested Reading articles found!